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1. Why do we need stochastic calculus? 

In the first section of this course you’ve seen a number of equations that describe current-

period variables in terms of next-period variables, as a result of no-arbitrage restrictions or of 

agents optimising over time. For example, you saw how the fundamental theorem of asset 

pricing implies  𝑃𝑡 = 𝐸𝑡
∗(𝑃𝑡+1).  

What happens if you make these time intervals between t and t+1 smaller and smaller? As the 

size of the steps approaches 0, you end up with a differential equation – a description of the 

rate of the change of a variable, given current values. So, in the coming section of the course 

when we work with continuous time, we will need to work with differential equations.  

But you’ll see that something strange happens when we introduce randomness into a 

continuous time model. The path of our continuous variables get very “squiggly.” So “squiggly,” 

in fact, that some of the normal calculus techniques you learned in school no longer work, and 

we need to invent new approaches. This section of the course introduces these new calculus 

techniques. 

The material starts by introducing continuous time in a deterministic framework to show how 

simple differential equations can be used to price assets. We then introduce the main building 

block we will use for continuous time stochastic processes – Brownian motion.  

Once we understand Brownian motion, we introduce the techniques we need to work with it – 

probability measures, Itô integrals, stochastic differential equations, and Itô’s Lemma. Finally 

we show how these techniques can be employed to price an asset in a continuous time 

framework. 

If you are interested in a more thorough and in-depth treatment of these topics you can read: 

• Mikosch, Elementary Stochastic Calculus with Finance in View, World Scientific 

• Shreve, Stochastic Calculus for Finance, Springer 

Another source that some students have found useful is the series “Topics In Mathematics With 

Applications In Finance” from MIT OpenCourseWare. Lectures 17, 18, and 21 cover similar 

ground to these lecture notes. 

  



2. Discrete and continuous time asset pricing without risk 

First let’s think about what happens when we move to discrete to continuous time in a totally 

deterministic model, with a simple no arbitrage constraint. 

a. Discrete time: 

Discounting 

Suppose we have some risk free bond B that returns the known risk free rate each period:  

𝐵𝑡+1
𝐵𝑡

≡ 𝑅𝑡+1
𝑓

 

If we want to look at the risk free rate over multiple periods we can just define: 

𝐵𝑡+𝑠
𝐵𝑡

=∏𝑅𝑡+𝑖
𝑓

𝑠

𝑖=1

≡ 𝑅𝑡→𝑡+𝑠
𝑓

 

Asset pricing 

If we want to know the price of a non-dividend paying asset with payoff of price 𝑃𝑇 at time T, 

there are two ways to approach this. These will seem very similar for now, but the distinction 

will make more sense later on. 

1) Direct approach 

As noted in the first section of this course the fundamental theorem of asset pricing implies: 

𝑃𝑡 =
1

𝑅𝑡→𝑇
𝑓

𝐸𝑡
∗(𝑃𝑇) = (𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑟𝑖𝑠𝑘)

𝑃𝑇

𝑅𝑡→𝑇
𝑓

 

In other words, we just need to discount the payoff using the risk free rate to find the current 

price. 

2) Difference equation 

We could also look at how the asset’s price evolves in each period. Since there is no risk, a no 

arbitrage constraints tell us that for all t: 

𝑃𝑡+1
𝑃𝑡

=
𝐵𝑡+1
𝐵𝑡

= 𝑅𝑡+1
𝑓

 

This is a “difference equation.” It tells us how 𝑃 evolves. To find the actual level of 𝑃𝑡 at any 

given time, we need to pin down some value. Since we know 𝑃𝑇 (we call this a “terminal 

condition), we can plug in this equation repeatedly, working backwards, to find 𝑃𝑡 

𝑃𝑡 =
𝑃𝑇

∏ 𝑅𝑖
𝑓𝑇

𝑖=𝑡

=
𝑃𝑇

𝑅𝑡→𝑇
𝑓

 

Note that if we had instead been given an “initial condition” 𝑃0, would find 𝑃𝑡 = 𝑃0𝑅𝑡→𝑡+𝑠
𝑓

. 

b. Continuous time: 

Discounting: 

Now let’s stop assuming that there are discrete units of time, and start allowing for time to take 

any value on the real number line.  

As before, we can define the risk free rate as the return on a risk free bond over any interval: 



𝐵𝑡+𝑠
𝐵𝑡

≡ 𝑅𝑡→𝑡+𝑠
𝑓

 

In practice, we often want to look at the risk-free rate over the smallest possible intervals. So we 

define the instantaneous risk free rate as the instantaneous returns on the risk-free bond: 

lim
𝑠→0

(𝐵𝑡+𝑠 − 𝐵𝑡)/𝑠

𝐵𝑡
=
𝑑𝐵𝑡/𝑑𝑡

𝐵𝑡
≡ 𝑟𝑡 

How can we write 𝑅𝑡→𝑡+𝑠
𝑓

 in terms of r? It might not be immediately obvious we can find an 

analytic expression. If we just plug in and integrate we don’t an expression that looks easy to 

work with: 

𝑅𝑡→𝑡+𝑠
𝑓

=
𝐵𝑡+𝑠
𝐵𝑡

=
1

𝐵𝑡
(𝐵𝑡 +∫

𝑑𝐵𝜏
𝑑𝜏

𝑑𝜏
𝑡+𝑠

𝑡

) = ? ? 

But we can use a little trick to make this easier – take the log first. This will come in useful 

repeatedly. Note that: 

𝑑𝐵𝑡/𝑑𝑡

𝐵𝑡
=
𝑑 log𝐵𝑡
𝑑𝑡

= 𝑟𝑡 

Now we can just integrate both sides to find: 

log
𝐵𝑡+𝑠
𝐵𝑡

= ∫
𝑑 log𝐵𝜏
𝑑𝜏

𝑑𝜏
𝑡+𝑠

𝑡

= ∫ 𝑟𝜏𝑑𝜏
𝑡+𝑠

𝑡

 

Hence: 

𝐵𝑡+𝑠
𝐵𝑡

= 𝑒∫ 𝑟𝜏𝑑𝜏
𝑡+𝑠

𝑡 = 𝑅𝑡→𝑡+𝑠
𝑓

 

Or, if 𝑟𝑡 is constant (as we will often assume): 

𝑅𝑡→𝑡+𝑠
𝑓

= 𝑒𝑟𝑠 

We will use exponential discounting with the continuously compounded risk free rate often, so 

you should get comfortable with this derivation and approach. 

Asset pricing: 

As in discrete time, there are two ways to think about finding the price of an asset with payoff 

𝑃𝑇 at time T. 

1) Direct approach 

𝑃𝑡 =
1

𝑅𝑡→𝑇
𝑓

𝐸𝑡
∗(𝑃𝑇) = (𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑟𝑖𝑠𝑘)

𝑃𝑇

𝑅𝑡→𝑇
𝑓

= 𝑃𝑇𝑒
−∫ 𝑟𝑠𝑑𝑠

𝑇

𝑡  

In other words, we just need to discount the payoff using the risk-free rate to find the current 

price. 

 

2) Differential equation 

As with our difference equations in discrete time, we can also price P by looking at what how 

the price evolves at all the smallest possible intervals of time between t and T:  

𝑑𝑃𝑡/𝑑𝑡

𝑃𝑡
=
𝑑𝐵𝑡/𝑑𝑡

𝐵𝑡
= 𝑟𝑡 



This is a differential equation. Just as for the difference equation in discrete time, it tells us how 

𝑃𝑡 evolves. But to pin down the level of 𝑃𝑡, we also need another condition. Differential 

equations like this, generally have unique solutions for the path of P given initial or terminal 

condition. However, when things get more complicated, those solutions are rarely available in 

closed form, except for a few lucky types of equation. 

We can of course find a closed form expression for 𝑃𝑡 here using the same approach as in the 

subsection on discounting above:  

log
𝑃𝑇
𝑃𝑡
= ∫

𝑑 log𝑃𝑠
𝑑𝑠

𝑑𝑠
𝑇

𝑡

= ∫ 𝑟𝑠𝑑𝑠
𝑇

𝑡

 

𝑃𝑡 = 𝑃𝑇𝑒
−∫ 𝑟𝑠𝑑𝑠

𝑇

𝑡  

And if we had worked with an initial condition of 𝑃0 instead of a terminal condition of 𝑃𝑇 , we 

would instead have: 𝑃𝑡 = 𝑃0𝑒
∫ 𝑟𝑠𝑑𝑠
𝑡

0  

  



3. Stochastic processes 

a. Discrete 

A stochastic process is a collection of random variables indexed by time. Or it may often be 

easier to think of it as a probability distribution over a space of paths. You have already been 

working with stochastic processes in this course. 

Examples: 

• Binary white noise: 𝑥𝑡+1 = {
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 ½
−1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 ½

 

• Simple random walk: 𝑥𝑡+1 = {
𝑥𝑡 + 1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 ½
𝑥𝑡 − 1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 ½

 

• Price with lognormal return 𝑃𝑡+1 = 𝑃𝑡𝑒
𝑧𝑡+1  where 𝑧𝑡+1 has a normal distribution 

Pricing a derivative: 

Suppose we there is a risky stock whose price is in each period is 𝑆𝑡. 

We want to find the price at time t of a derivative that pays some function 𝑓(𝑆𝑇) at time T. We 

could again take two approaches: 

1) Direct approach: 

𝑃𝑡 =
1

𝑅𝑡→𝑇
𝑓

𝐸𝑡
∗(𝑓(𝑆𝑇)) = 𝐸𝑡(𝑀𝑡→𝑇𝑓(𝑆𝑇)) 

The price of 𝑃𝑡 therefore depends on f function, but also on the distribution and variance of 𝑆𝑇 , 

due to Jensen’s inequality. With specific assumptions on the distribution of 𝑀𝑡→𝑇𝑓(𝑆𝑇) (e.g. 

lognormality), we could calculate or numerically estimate the price at time t. 

2) Difference equation: 

In each period the derivatives price must follow: 

𝑃𝑡 =
1

𝑅𝑡+1
𝑓

𝐸𝑡
∗(𝑃𝑡+1) = 𝐸𝑡(𝑀𝑡+1𝑃𝑡+1) 

And in the final period: 𝑃𝑇 = 𝑓(𝑆𝑇) 

This gives us a difference equation with a terminal condition. Therefore, similar to the approach 

in the deterministic section, we could work backwards step by step to find 𝑃𝑡, if we make some 

assumption on the distribution of 𝑆𝑡 in each period. This is, for example, how you learned to 

approach pricing in the binomial tree model. 

b. Continuous: 

How can we define a “reasonable” continuous stochastic process non-degenerate processes? It’s 

not straightforward. 

Think about what it would “look like” if you tried to define binary random noise or simple 

random walk the exact same way as we did for discrete time: 

𝑥𝑡+1 = {
𝑥𝑡 + 1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 ½
𝑥𝑡 − 1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 ½

 

Or would it be possible to define the following? 

∀𝑠 > 0:   𝑥𝑡+𝑠 = {
𝑥𝑡 + 1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 ½
𝑥𝑡 − 1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 ½

 



It’s tricky to define a continuous stochastic process! In practice, we rely a lot on one well-

understood process which we will describe in the next section: Brownian motion. 

  



4. Brownian motion (aka Wiener process) 

a. Existence  

It turns out that you can define a process that is continuous, and normally distributed over 

every possible interval. This is Brownian motion (sometimes also called a Wiener process). 

I will call the following the “Brownian motion existence theorem” (but won’t prove it): 

There exists a probability distribution over the set of continuous functions 𝐵:ℝ → ℝ satisfying: 

i. 𝐵(0) = 0 

ii. (Normally distributed): For all 0 ≤ 𝑠 < 𝑡, the distribution of 𝐵(𝑡) − 𝐵(𝑠) is the 

normal distribution with mean 0 and variance 𝑡 − 𝑠 

iii. (Independent increments): For any set of non-overlapping time intervals [𝑠𝑖 , 𝑡𝑖] 

where 𝑖 = 1,2, …𝑁, the random variables 𝐵(𝑡𝑖) − 𝐵(𝑠𝑖) are mutually 

independent. 

We refer to a particular instance of a path chosen according to the Brownian motion as a sample 

Brownian path. 

b. Facts about Brownian motion 

1. The values attained by a sample Brownian path (these I won’t prove): 

a. Have a standard deviation of √𝑡 – i.e. a sample path is more likely than not to be 

somewhere in the range [−√𝑡, √𝑡] 

b. Cross the t-axis infinitely often 

c. Eventually hit every real number 

2. Brownian motion is the limit of a random walk as the number of steps approaches 

infinity 

3. Brownian motion is continuous, but nowhere differentiable 

c. Brownian motion as the limit of a random walk 

How do we get this marvellous process? One way to think about it is as the limit of a random 

walk as the size of each steps approaches 0. 

Proof: 

Consider a random walk that lasts for 𝑛 steps along a time axis of from 0,1, where each 

increment is either +
1

√𝑛
 or −

1

√𝑛
 with probability ½ . I.e: 

𝑌0 = 0 

𝑌
𝑡+
1
𝑛
=

{
 

 𝑌𝑡 +
1

√𝑛
 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 ½

𝑌𝑡 −
1

√𝑛
 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 ½

  𝑓𝑜𝑟 𝑡 ∈ {0,
1

𝑛
,
2

𝑛
,…
𝑛 − 1

𝑛
} 

Note that: 

i. We have chosen each time increment to be 
1

𝑛
 so that the 𝑛 steps go from 0 to 1 

ii. We have chosen the increments to be 
1

√𝑛
 so that the variance of each step is 

1

𝑛
, so 

the variance of 𝑌𝑡 is constant no matter how many steps there are.  

𝑣𝑎𝑟(𝑌𝑡) = 𝑡𝑛 ∗
1

𝑛
= 𝑡. And  𝑣𝑎𝑟(𝑌𝑡 − 𝑌𝑠) = 𝑡 − 𝑠 for 𝑡, 𝑠 ∈ {0,

1

𝑛
,
2

𝑛
, … 1} 



 

If we take the limit as 𝑛 → ∞, then we can apply the central limit theorem (CLT) to show this is 

normally distributed over all intervals (i.e. a Brownian motion from 0 to 1).  

The CLT states for a random variable X with variance 1 

1

√𝑁
∑𝑋𝑖

𝑁

𝑖=1

→𝑑 𝑁(0,1)  

If we take any interval {𝑡, 𝑠} such that 𝑡, 𝑠 ∈ {0,
1

𝑛
,
2

𝑛
, … 1}, then we have: 

𝑌𝑡 − 𝑌𝑠 = ∑ (𝑌
𝑠+

𝑖
𝑛

− 𝑌
𝑠+
𝑖−1
𝑛

)

𝑛(𝑡−𝑠)

𝑖=1

 

If we let 𝑋𝑖 = √𝑛 (𝑌𝑠+ 𝑖

𝑛

− 𝑌
𝑠+

𝑖−1

𝑛

) and 𝑁 = 𝑛(𝑡 − 𝑠), then we can rewrite this: 

𝑌𝑡 − 𝑌𝑠 =
1

√𝑛
∑𝑋𝑖

𝑁

𝑖=1

= √𝑡 − 𝑠
1

√𝑁
∑𝑋𝑖

𝑁

𝑖=1

 

Since 𝑣𝑎𝑟(𝑋𝑖) = 1 (by construction), the CLT tells us: 

𝑌𝑡 − 𝑌𝑠 →
𝑑 𝑁(0, 𝑡 − 𝑠) 

Hence as 𝑛 → ∞, the random walk series 𝑌 approaches a Brownian motion from 0 to 1. 

d. Non-differentiability 

One striking fact about Brownian motion is that it is everywhere continuous but nowhere 

differentiable, with probability 1. Here I present an argument why this is the case (although not 

exactly a formal proof). This isn’t a course in probability theory, so don’t sweat the details of this 

too much – just try to get the intuition. 

Think about the fact that the standard deviation of 𝐵(𝑡) is √𝑡. For any probability p the “p 

percentile confidence interval” of where 𝐵(𝑡) lies will be proportional to √𝑡 – i.e. will be 

[−𝑘√𝑡, 𝑘√𝑡] for some value of 𝑘. Draw what this looks like on a graph. What happens to its 

values as 𝑡 → 0? What happens to the slope of its boundaries as 𝑡 → 0? 

To make this a bit more specific: 

Let 𝑝 be any probability in (0,1) 

Let 𝑘 be the inverse standard normal CDF of 
𝑝

2
: 𝑘 = Φ−1(

𝑝

2
) 

Since 𝐵(𝑡)~𝑁(0, 𝑡), we know that 𝐵(𝑡) ∈ (−𝑘√𝑡, 𝑘√𝑡) with probability 𝑝 

As 𝑡 → 0, our interval (−𝑘√𝑡, 𝑘√𝑡) comes arbitrarily close to 0 for any probability p. So 

it makes sense that it converges 

But the slope of the boundaries of interval approaches infinity, i.e.  lim
𝑡→0

𝑑(𝑘√𝑡)

𝑑𝑡
= ∞. So it 

makes sense that we can’t differentiate the function – the possible realisations don’t 

converge towards any slope as 𝑡 → 0. 

Below I provide an informal proof of continuity: 

Given distance 𝛿, the probability 𝐵(𝑡) ∈ (−𝛿, 𝛿) is  𝑝𝛿(𝑡) = 2Φ(
δ

√𝑡
) − 1 



∀𝛿, lim
t→0

𝑝𝛿(𝑡) = 2 − 1 = 1    

So for any tiny distance 𝛿, if I pick a small enough 𝑡, I can make the probability that 𝐵(𝑡) 

is less than 𝛿 away from 𝐵(0) arbitrarily high. So 𝐵 is continuous at 0 with probability 1. 

And an informal proof of non-differentiability: 

 Denote the slope of 𝐵 between 0 and t by 𝑏(𝑡):  𝑏(𝑡) ≡
𝐵(𝑡)

𝑡
 

 Suppose 𝐵 is differentiable at 𝑡 = 0, and 
𝑑𝐵(0)

𝑑𝑡
= 𝐺 ≥ 0. This means lim

𝑡→0
𝑏(𝑡) = 𝐺 

For any 𝑡 > 0, the probability that 𝑏(𝑡) < 0 is 
1

2
 

For any 𝜖 > 0 The probability 𝑏(𝑡) > 2𝐺 is 𝑝2𝐺(𝑡) = 1 − Φ(2𝐺√t) 

∀𝐺 > 0: lim
t→0

𝑝2𝐺(𝑡) = 1 − 0.5 = 0.5  

Thus the probability 𝑃(𝑏(𝑡) ∈ (0,2𝐺)) → 0 as 𝑡 → 0 

So G cannot be the derivative B at 0, because for any unit time 𝜖 > 0, we can find a point 

𝑏(𝑡) with within that time (i.e. 𝑡 < 𝜖), such that  𝑏(𝑡) lies outside of (0,2𝐺) with 

arbitrarily high probability.  

e. Brownian motion with drift 

We’ll often want to consider processes that are functions of a Brownian motion, rather than just 

the Brownian motion itself. E.g. a Brownian motion with a drift is a Brownian motion, plus some 

cumulative function of time: 

𝑋𝑡 = 𝑋0 +∫ 𝜇𝑠

𝑡

0

𝑑𝑠 + 𝜎𝐵𝑡  

Where 𝜇𝑠 is the drift for time s. If the drift is constant, then we have the simpler expression: 

𝑋𝑡 = 𝑋0 + 𝜇𝑡 + 𝜎𝐵𝑡 

𝜎 is a constant volatility (aka “diffusion”) term. 

f. Geometric Brownian motion 

In finance we often work with a process called “geometric Brownian motion” (as opposed to 

“arithmetic” Brownian motion), which has instantaneous returns that follow a Brownian 

motion. A geometric Brownian motion process S, with a constant drift can be simply defined as:  

𝑆𝑡 = 𝑆0𝑒
𝑀𝑡+𝜎𝐵𝑡 

where 𝑀,𝜎 are constants. A GBM is lognormally distributed over all intervals, and is always 

greater than 0, as long as 𝑆0 > 0. 

  



5. Probability measures in continuous time 

a. The risk neutral measure 

Earlier in the course, you saw that no arbitrage implied that you could set up a special 

“probability measure” under which all assets return the risk-free rate. You rewrote the SDF 

times the physical probability as a new “risk neutral probability.” 

It turns out you can do the exact same thing in continuous time. In general, if any two mappings 

of states to probabilities are “equivalent” – meaning they share an assessment of what has 0 and 

1 probability – then you can always change measure between them.  

Since we’ve defined Brownian motion as having 0 mean, we write that a Brownian motion is 

associated with a specific “probability measure.” E.g. if we say 𝐵𝑡 is Brownian motion under the 

physical probability measure and 𝐵𝑡
𝑄

 is Brownian motion under the risk neutral measure Q, that 

means that 𝐸𝑡(𝐵𝑠) = 0, 𝐸𝑡
𝑄(𝐵𝑠) ≠ 0, 𝐸𝑡(𝐵𝑠

𝑄
) ≠ 0, 𝐸𝑡

𝑄
(𝐵𝑠

𝑄
) = 0.1 

b. Key facts about changing measure with Brownian motions 

Just as in discrete time, it can be useful to “change measure” from the physical probabilities to 

the risk neutral probabilities when dealing with Brownian motions. There are three important 

things for you to know about changing probability measure with Brownian motions: 

1. When you change measure, you add a drift term. 

a. If you compare two Brownian motions under measures Q and P: 𝐵𝑡
𝑄 = 𝐵𝑡

𝑃 +

∫ 𝜂𝑠𝑑𝑠
𝑡

0
, where 𝜂𝑠 is the new drift applied at time s. If 𝜂𝑠 is constant we can write 

this in a simpler way: 𝐵𝑡
𝑄 = 𝐵𝑡 + 𝜂𝑡 

b. This is similar to what you learned earlier in discrete time: 𝐸(𝑅𝑖,𝑡+1) ≠

𝐸∗(𝑅𝑖,𝑡+1) 

2. When you change measure, the variance does not change 

a. 𝑣𝑎𝑟𝑠(𝐵𝑡
𝑄
)  = 𝑣𝑎𝑟𝑠(𝐵𝑡

𝑃) = 𝑡 − 𝑠 

b. So if we consider a process 𝑋𝑡 = 𝜇𝑡 + 𝜎𝐵𝑡, under a different measure 𝜇 will be 

different but 𝜎 (the “diffusion” term) will be the same 

c. The variance of a Brownian motion is known with certainty from observing it for 

any time period, so it does not change under different probability measures.  

d. The continuous, “fractal” nature of Brownian motion means even if I gave you a 

microsecond of data, you could chop it up into an infinite number of periods and 

observe the variance. You will see this in more detail in subsection on “quadratic 

variation” later. 

e. This is different from what you learned in the discrete time section. It was not 

the case in general that 𝑣𝑎𝑟𝑡(𝑅𝑖,𝑡+1) = 𝑣𝑎𝑟𝑡
∗(𝑅𝑖,𝑡+1) 

3. Any two Brownian motions with drift are equivalent (“Girsanov’s Theorem”) 

a. This means that for any process we can always change to a risk neutral measure 

under which the expected instantaneous returns are the risk free rate. 

b. More generally, for any drift 𝜂𝑠 that we want to generate, there must exist a 

probability measure Q such that : 𝐵𝑡
𝑄 = 𝐵𝑡

𝑃 + ∫ 𝜂𝑠𝑑𝑠
𝑡

0
 (as long as 𝜂𝑠 is not a 

function of future realisations of 𝐵𝑡
𝑄) 

 

1 The risk neutral measure is typically denoted by a Q or a * superscript 



c. For example, if we have a process 𝑋𝑡 = 𝑋0 + 𝜇𝑡 + 𝜎𝐵𝑡, and we want to change to 

a measure in which X has 0 drift, we could simply state that there must be a 

measure Q such that 𝐵𝑡
𝑄
= 𝐵𝑡 −

𝜇

𝜎
𝑡. Then 𝑋𝑡 = 𝑋0 + 𝜎𝐵𝑡

𝑄
 

For this course you will mainly just use the physical measure and the risk neutral measure. And 

what you need to know is that you can switch between them. When you switch to the risk 

neutral measure, the Brownian motion picks up a drift that’s equal to whatever is needed to 
make the process you are interested have an expected return of the instantaneous risk free rate: 

𝑟𝑡. The diffusion term does not change. 

There can also be times where it can be useful to use to other probability measures, but you will 

probably not need to do so in this course. For example, if you a pricing an option on the relative 

price of two assets, it may be useful to use a measure under which the drift of their relative 

prices is 0.  

  



6. Itô integrals and stochastic differential equations 

We have shown that Brownian motion is not differentiable. This seems like a problem for us, 

because in section 2, we also saw that continuous time asset pricing uses differential equations 

(e.g. we used the statement 
𝑑𝑃𝑡/𝑑𝑡

𝑃𝑡
= 𝑟𝑡 for our deterministic model). We’d like to be able to get a 

differential equation for 𝑓(𝐵𝑡), but we can’t write 
𝑑𝑓(𝐵𝑡)

𝑑𝑡
= 𝑓′(𝐵𝑡)

𝑑𝐵𝑡

𝑑𝑡
. 

So how can we rescue something that looks like differential equations, but with Brownian 

motion? 

Consider that when we use differential equations, we’re often not really interested in the point 

in time values of 
𝑑𝑃𝑡

𝑑𝑡
 or 

𝑑𝑓(𝑃𝑡)

𝑑𝑡
. We’re really interested in finding some level (e.g. 𝑃𝑡), and we use 

integrals over the differential equations to do so. E.g. we used the fact that ∫
𝑑 log𝑃𝑡

𝑑𝑡
𝑑𝑡

𝑇

0
=

log𝑃𝑇 − log𝑃𝑡 to find 𝑃𝑡 in part 2. 

So maybe even if the derivative 
𝑑B𝑡

𝑑𝑡
 doesn’t exist, we can rescue something that does the job that 

we would want the integral ∫
𝑑𝐵𝑡

𝑑𝑡
𝑑𝑡

𝑇

0
 or ∫

𝑑𝑓(𝐵𝑡)

𝑑𝑡
𝑑𝑡

𝑇

0
 to do, and still use some sort of differential 

equation. 

a. The Itô integral 

The usual Reimann integral that we learn for calculus can be defined as: 

∫ 𝑓(𝑡)𝑑𝑡
𝑇

0

= lim
𝑛→∞

∑𝑓(
𝑖 − 1

𝑛
𝑇) (

𝑇

𝑛
)

𝑛

𝑖=1

 

I.e. split up T into n different increments, and evaluate 𝑓 (
𝑖−1

𝑛
𝑇) times the increment length. 

The fundamental theorem of calculus tells us that for a differentiable function F: 

𝐹(𝑋) − 𝐹(0) = ∫ 𝐹′(𝑥)𝑑𝑥
𝑋

0

 

 

We can create a similar statement using something that we’ll call the “Itô integral”, which allows 

us to work with a non-differentiable function 𝐵(𝑡). 

Definition: Itô integral 

∫ 𝑓(𝑡)𝑑𝐵(𝑡)
𝑇

0

= lim
𝑛→∞

∑𝑓(
𝑖 − 1

𝑛
𝑇)(𝐵 (

𝑖

𝑛
𝑇) − 𝐵 (

𝑖 − 1

𝑛
𝑇))

𝑛

𝑖=1

 

I.e. split up B(T) into n different increments, and evaluate 𝑓 (
𝑖−1

𝑛
𝑇) times each increment length. 

Clearly, a similar statement to the fundamental theorem of calculus holds: 

𝐵(𝑇) − 𝐵(0) = ∫ 𝑑𝐵(𝑡)
𝑇

0

 

Because all we’ve done is divided 𝐵 into little increments and then summed those up together 

again. 



b. Stochastic differential equations 

Now we can write things that look like differential equations, but use non-differentiable 

functions. 

As a simple example, let’s try to write a differential equation that describes the price of a stock 

𝑆(𝑡) whose instantaneous returns follow a Brownian motion at time t (ignoring any drift term 

for now).2 I.e. changes in 𝑆(𝑡) are equal to 𝑆(𝑡) times changes in the Brownian motion times 

some volatility term 𝜎. I would be tempted to write: 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝑆(𝑡)𝜎

𝑑𝐵(𝑡)

𝑑𝑡
 

But I cannot use this differential equation because, because 
𝑑𝐵(𝑡)

𝑑𝑡
 does not exist. 

However, I can represent this relationship using Itô integrals. When I write that the 

instantaneous returns follow a Brownian motion, I’m saying that for very small increments (i.e. 

very large number of increments n): 

𝑆 (
𝑖
𝑛
𝑇) − 𝑆 (

𝑖 − 1
𝑛

𝑇)

𝑆 (
𝑖 − 1
𝑛 𝑇)

≈ 𝜎 (𝐵 (
𝑖

𝑛
𝑇) − 𝐵 (

𝑖 − 1

𝑛
𝑇)) 

If we add a summation around this expression, and take the limit as 𝑛 → ∞ we have: 

lim
𝑛→∞

∑𝑆(
𝑖

𝑛
𝑇) − 𝑆 (

𝑖 − 1

𝑛
𝑇)

𝑛

𝑖=1

= lim
𝑛→∞

∑𝑆(
𝑖 − 1

𝑛
𝑇)𝜎 (𝐵 (

𝑖

𝑛
𝑇) − 𝐵 (

𝑖 − 1

𝑛
𝑇))

𝑛

𝑖=1

 

This matches our definition of the Itô integral. We can therefore write: 

𝑆(T) − 𝑆(0) = ∫ 𝑑𝑆(𝑡)
T

0

= ∫ 𝑆(𝑡)𝜎𝑑𝐵(𝑡)
T

0

 

If this integral relationship holds over any arbitrary interval, then it is often convenient to just 

drop the integrals from the notation. So we just write: 

𝑑𝑆(𝑡) = 𝑆(𝑡)𝜎𝑑𝐵(𝑡) 

This is a stochastic differential equation (SDE). It is defined to mean that the Itô integral of 

the left and right hand sides are equal over all possible intervals.  

c. Working with stochastic differential equations: 

Two important and simple facts will help you work with stochastic differential equations 

1) Itô integrals can be combined with Reimann integrals, and thus SDEs can include 𝑑𝑡 

E.g. let’s add a drift to our Geometric Brownian Motion and say that the stock returns follow a 

Brownian motion, plus a constant mean that we’ll call a “drift”. 

Now we’re saying that each little increment of 𝑆(𝑡) is equal to 𝑆(𝑡) times a little increment of 

𝐵(𝑡) (scaled by 𝜎) plus a little increment of time (scaled by 𝜇). In terms of Itô integrals we can 

write this as: 

𝑆(𝑇2) − 𝑆(𝑇1) = ∫ 𝑑𝑆(𝑡)
𝑇2

𝑇1

= ∫ 𝑆(𝑡)𝜎𝑑𝐵(𝑡)
𝑇2

𝑇1

+∫ 𝑆(𝑡)𝜇𝑑𝑡
𝑇2

𝑇1

 

 

2 This is Geometric Brownian motion 



over any arbitrary interval [𝑇1, 𝑇2]. The last integral is an ordinary Riemann integral. We can 

then write this as an SDE: 

𝑑𝑆(𝑡) = 𝑆(𝑡)𝜎𝑑𝐵(𝑡) + 𝑆(𝑡)𝜇𝑑𝑡 

2) SDEs can be manipulated stochastic differential equations as normal, although you cannot 

divide or multiply by the infinitesimal 𝑑 parts. 

 E.g. we could write the equation above as: 

𝑑𝑆(𝑡)

𝑆(𝑡)
= 𝜎𝑑𝐵(𝑡) + 𝜇𝑑𝑡 

𝑑𝑆(𝑡)

𝑆(𝑡)
− 𝜎𝑑𝐵(𝑡) − 𝜇𝑑𝑡 = 0 

Etc… 

But you cannot write: 

𝑑𝑆(𝑡)

𝑑𝑡
− 𝜎

𝑑𝐵(𝑡)

𝑑𝑡
= 𝜇 

d. SDEs and martingales 

A process 𝑋 is said to be a “martingale” if 𝐸𝑡(𝑋𝑠) = 𝑋𝑡 for all 𝑠 ≥ 𝑡. I.e. the best predictor of 

future value is current value. 

When is an Itô integral a martingale? If you look at the summation notation you’ll see we’re just 

summing up a lot of independent normal variables. Which means that unless f is a function of 

future occurrences of 𝐵𝑡, then you’ll have a martingale. 

We call a function f  that is only a function of past and contemporaneous events (not future 

events) an “adapted process” in SDE jargon. In general, most processes we deal with in finance 

will be “adapted processes” because e.g. a trading strategy or a derivative price today can’t be 

based on where stocks will go in the future! 

Fact: If f is an adapted process, then ∫ 𝑓(𝑠, 𝐵𝑠)𝑑𝐵𝑠
𝑇

0
 is a martingale. I.e.: 

𝐸𝑡 (∫ 𝑓(𝑠, 𝐵𝑠)𝑑𝐵𝑠

𝑇

𝑡

) = 0 

Or in SDE notation we can write: 𝐸𝑡(𝑓(𝑠, 𝐵𝑠)𝑑𝐵𝑠) = 0    𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠 ≥ 𝑡 

  



7. Itô’s Lemma 

a. Why do we need Itô’s Lemma? 

For normal calculus, one very important tool we use a lot is the chain rule: 

𝑑𝑓(𝑔(𝑥))

𝑑𝑥
= 𝑓′(𝑔(𝑥))𝑔′(𝑥) 

We will need a version of this for SDEs: 

𝑑𝑓(𝐵(𝑡)) =? 

For example, in section 2 we used a trick to find the bond price implied given by the differential 

equation: 
𝑑𝑃(𝑡)/𝑑𝑡

𝑃(𝑡)
= 𝑟𝑡. We differentiated  log𝑃(𝑡) and used 

𝑑 log𝑃(𝑡)

𝑑𝑡
=

𝑑𝑃(𝑡)/𝑑𝑡

𝑃(𝑡)
.  

To find the stock price implied by the geometric Brownian motion SDE: 
𝑑𝑆(𝑡)

𝑆𝑡
= 𝜇𝑡 + 𝜎𝑑𝐵(𝑡), we 

might like to try the same trick. But what is 𝑑 log 𝑆(𝑡)? 

Your first guess might be to apply to apply the chain rule as normal and state:  

𝑑𝑓(𝐵(𝑡)) = 𝑓′(𝐵(𝑡))𝑑𝐵(𝑡) 

𝑑 log𝐵(𝑡) =
𝑑𝐵(𝑡)

𝐵(𝑡)
 

But it turns out this is incorrect. It is incorrect because of special property of Brownian motion: 

“quadratic variation of t”. 

b. Quadratic variation 

Definition 

Let’s define an object called “Quadratic variation”. 

For any function 𝑓(𝑡), the quadratic variation from 0 to T is: 

lim
n→∞

∑(𝑓 (
𝑖

𝑛
𝑇) − 𝑓 (

𝑖 − 1

𝑛
𝑇))

2𝑛

𝑖=1

 

In other words: find the changes in the function over a large number of tiny increments between 

0 and T. The quadratic variation is the sum of the squares of these changes. 

In Itô integral notation we could write this object as: 

∫ (𝑑𝑓(𝑡)) 2
𝑇

0

 

Quadratic variation of differentiable functions: 

It should not be surprising that for any differentiable function, the quadratic variation is 0. The 

square of a tiny number is much smaller than the number itself. And simply adding up all the 

changes in f gets you 𝑓(𝑇) − 𝑓(0), which is finite. So it makes sense that the sum of the squared 

increments approaches 0. 

In in Itô integral notation, this means: ∫ (𝑑𝑓(𝑡)) 2
𝑇

0
= 0 for any differentiable function f 

In SDE notation, this can be written: (𝑑𝑓(𝑡)) 2 = 0 

 



Proof: 

We can rewrite the changes 𝑓 (
𝑖

𝑛
𝑇) − 𝑓 (

𝑖−1

𝑛
𝑇) as the time increment 

𝑇

𝑁
 multiplied by the 

average slope of 𝑓 from 
𝑖−1

𝑛
𝑇 to 

𝑖

𝑛
𝑇: 

𝑓 (
𝑖

𝑛
𝑇) − 𝑓 (

𝑖 − 1

𝑛
𝑇) = 𝑓𝑠𝑙𝑜𝑝𝑒(𝑖)

𝑇

𝑁
 𝑤ℎ𝑒𝑟𝑒 𝑓𝑠𝑙𝑜𝑝𝑒(𝑖) = (𝑓 (

𝑖

𝑛
𝑇) − 𝑓 (

𝑖 − 1

𝑛
𝑇))

𝑁

𝑇
 

Let 𝑓𝑚𝑎𝑥
′ (𝑇) bet the highest absolute value of derivative attained by f along  [0, 𝑇]. 

𝑓𝑚𝑎𝑥
′ (𝑇) ≡ sup|𝑓′(𝑡)|  for t ∈ [0, T]  

For all 𝑖 ∈ {1,2, …𝑛}, the𝑓𝑠𝑙𝑜𝑝𝑒(𝑖) must be less in absolute value than 𝑓𝑚𝑎𝑥
′ (𝑇) by the 

mean value theorem. I.e. 𝑓𝑠𝑙𝑜𝑝𝑒(𝑖)2 ≤ 𝑓𝑚𝑎𝑥
′ (𝑇)2 

Hence (𝑓 (
𝑖

𝑛
𝑇) − 𝑓 (

𝑖−1

𝑛
𝑇))

2

≤ 𝑓𝑚𝑎𝑥
′ (𝑇)2 (

𝑇

𝑛
 )
2

 

lim
𝑛→∞

∑ (
𝑇

𝑛
)
2

𝑛
𝑖=1 = 0, so: 

lim
n→∞

∑(𝑓 (
𝑖

𝑛
𝑇) − 𝑓 (

𝑖 − 1

𝑛
𝑇))

2𝑛

𝑖=1

≤ 𝑓𝑚𝑎𝑥
′ (𝑇)2 lim

n→∞
∑(

𝑇

𝑛
)
2𝑛

𝑖=1

= 0 

Quadratic variation of Brownian motion: 

An important result is that the quadratic variation of Brownian motion is T: 

∀𝑇 > 0, lim
n→∞

∑(𝐵(
𝑖

𝑛
𝑇) − 𝐵 (

𝑖 − 1

𝑛
𝑇))

2𝑛

𝑖=1

= 𝑇 

As an Itô integral this says: ∫ 𝑑𝐵𝑡
2 = 𝑇 

And as an SDE: 𝑑𝐵𝑡
2 = 𝑑𝑡 

And in words: if you sum the squares of all the infinitesimal changes in 𝐵𝑡, you get the changes 

in t. 

Proof: 

Simply apply the (strong) law of large numbers. 

𝑛 (𝐵 (
𝑖

𝑛
𝑇) − 𝐵 (

𝑖−1

𝑛
𝑇))

2

 is a random variable with mean T, because (
𝑖

𝑛
𝑇) −

𝐵 (
𝑖−1

𝑛
𝑇)~𝑁 (0,

𝑇

𝑛
) 

So by LLN: 

1

𝑛
∑𝑛(𝐵 (

𝑖

𝑛
𝑇) − 𝐵 (

𝑖 − 1

𝑛
𝑇))

2𝑛

𝑖=1

→𝑝 𝑇 

If you go through the same logic with the “covariation” of two correlated Brownian motions B 

and Z, you will find that their quadratic covariation is 𝜌𝑇. As an SDE, we can write this fact as: 

𝑑𝐵𝑡𝑑𝑍𝑡 = 𝜌𝑑𝑡.  

If we calculate the quadratic covariation of a Brownian motion and a differentiable function, we 

will find it is 0. We can write this fact as: 𝑑𝐵𝑡𝑑𝑡 = 0. 

 Finally, if you calculate the cubic, quartic, etc variation of a Brownian motion, you will also find 

it is 0 (i.e. 𝑑𝐵𝑡
𝑘 = 0 𝑓𝑜𝑟 𝑘 > 2). The appendix contains more detail on these calculations. 



So, if we collect all the facts we learned about quadratic variation (in SDE notation), we have: 

𝑑𝐵𝑡
2 = 𝑑𝑡 

𝑑𝐵𝑡𝑑𝑡 = 0 

𝑑𝑡2 = 0 

𝑑𝐵𝑡𝑑𝑍𝑡 = 𝜌𝑑𝑡 

𝑑𝐵𝑡
𝑘 = 0 𝑓𝑜𝑟 𝑘 > 2 

 

c. Demonstrating Itô’s lemma 

Consider a differentiable function 𝑓(𝑡). 

If we want to know the change in 𝑓(𝑡) over some small increment Δ𝑓(𝑡), we can use a Taylor 

expansion: 

Δ𝑓(𝑡) = 𝑓′(𝑡)Δ𝑡 +
1

2
𝑓′′(𝑡)Δ𝑡2 +

1

6
𝑓′′′(𝑡)Δ𝑡3 +⋯ 

So if we want to evaluate the sum of an infinite number of small changes in 𝑓(𝑡): 

∫ 𝑑𝑓(𝑡)
𝑇

0

 

We can just plug in the Taylor expansion into the definition of the integral to get: 

∫ 𝑑𝑓(𝑔(𝑡))
𝑇

0

= ∫ 𝑓′(𝑡)𝑑𝑡
𝑇

0

+∫
1

2
𝑓′′(𝑡)𝑑𝑡2

𝑇

0

+∫
1

6
𝑓′′′(𝑡)𝑑𝑡3

𝑇

0

… 

Because the quadratic variation of t is 0 (and higher power variations are also 0), then the terms 

associated with 𝑑𝑡2, 𝑑𝑡3, etc… are 0 we are left (unsurprisingly) with: 

∫ 𝑓′(𝑡)𝑑𝑡
𝑇

0

 

If you’re not sure what’s going on here, it may help to write out the steps above in summation 

form:  

lim
𝑛→∞

∑(𝑓 (
𝑖

𝑛
𝑇) − 𝑓 (

𝑖 − 1

𝑛
𝑇))

𝑛

𝑖=1

= lim
𝑛→∞

∑(𝑓′ (
𝑖 − 1

𝑛
𝑇)
𝑇

𝑛
+
1

2
𝑓′′ (

𝑖 − 1

𝑛
𝑇) (

𝑇

𝑛
)
2

+⋯)

𝑛

𝑖=1

= lim
𝑛→∞

∑(𝑓′ (
𝑖 − 1

𝑛
𝑇)
𝑇

𝑛
)

𝑛

𝑖=1

 

Where the last step is because t has 0 quadratic or higher order variation. 

However, if we replace t with a Brownian motion 𝐵(𝑡), we will get a different result, because of 

its non-0 quadratic variation. 

The Taylor expansion is now: 

∫ 𝑑𝑓(𝐵(𝑡))
𝑇

0

= ∫ 𝑓′(𝐵(𝑡))𝑑𝐵(𝑡)
𝑇

0

+∫
1

2
𝑓′′(𝐵(𝑡))𝑑𝐵(𝑡)2

𝑇

0

+⋯ 

Since 𝐵(𝑡) has quadratic variation of t, we have: 



∫
1

2
𝑓′′(𝐵(𝑡))𝑑𝐵(𝑡)2

𝑇

0

=
1

2
𝑓′′(𝐵(𝑡))𝑡 

And so the Taylor expansion is equal to : 

∫ 𝑑𝑓(𝐵(𝑡))
𝑇

0

= ∫ 𝑓′(𝐵(𝑡))𝑑𝐵(𝑡)
𝑇

0

+
1

2
𝑓′′(𝐵(𝑡))𝑡 

Or in SDE terms: 

𝑑𝑓(𝐵(𝑡)) = 𝑓′(𝐵(𝑡))𝑑𝐵(𝑡) +
1

2
𝑓′′(𝐵(𝑡))𝑑𝑡 

This equation is Itô’s Lemma – the key result in stochastic calculus. 

d. Itô’s Lemma 

To make this statement slightly more general and useful, we will consider: 

• A process X that has some drift, rather than just a pure Brownian motion (e.g. a stock 

price) 

• A function f that is a function of time and the value of X (e.g. an option price) 

Itô’s lemma: 

Let 𝑓(𝑡, 𝑋𝑡) be a twice differentiable function of two variables and 𝑑𝑋𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝐵𝑡  
be a stochastic process with Brownian motion B. Then: 

𝑑𝑓(𝑡, 𝑋𝑡) = (
𝜕𝑓

𝜕𝑡
+ 𝜇𝑡

𝜕𝑓

𝜕𝑋
+
1

2

𝜕2𝑓

𝜕𝑋2
𝜎𝑡
2)𝑑𝑡 +

𝜕𝑓

𝜕𝑋
𝜎𝑡𝑑𝐵𝑡  

Note: I have switched derivative notation from 𝑓′ to 
𝜕𝑓

𝜕𝑡
 for clarity, since I now have two partial 

derivatives of f. 

To prove derive this version, simply differentiate f as in the previous section: 

𝑑𝑓(𝑡, 𝑋𝑡) =
𝜕𝑓

𝜕𝑡
𝑑𝑡 +

𝜕𝑓

𝜕𝑋
𝑑𝑋𝑡 +

1

2

𝜕2𝑓

𝜕𝑋2
𝑑𝑋𝑡

2 

And then plug in for 𝑑𝑋𝑡
2 using our quadratic variation results: 

𝑑𝑋𝑡
2 = 𝜇𝑡

2𝑑𝑡2 + 2𝜇𝑡𝜎𝑡𝑑𝑡𝑑𝐵𝑡 + 𝜎𝑡
2𝑑𝐵𝑡

2 = 𝜎𝑡
2𝑑𝑡 

e. Itô’s Lemma with two Brownian motions 

We can use our quadratic variation result: 

𝑑𝐵𝑡𝑑𝑍𝑡 = 𝜌𝑑𝑡 

to find Itô’s Lemma with two correlated Brownian motions. 

If: 

𝑑𝑋𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝐵1,𝑡 

𝑑𝑌𝑡 = 𝛼𝑡𝑑𝑡 + β𝑡𝑑𝐵2,𝑡 

and 𝑓(𝑡, 𝑋𝑡 , 𝑌𝑡) is a twice differentiable function. Then: 



𝑑𝑓(𝑡, 𝑋𝑡 , 𝑌𝑡) = (
𝜕𝑓

𝜕𝑡
+
𝜕𝑓

𝜕𝑋
𝜇𝑡 +

𝜕𝑓

𝜕𝑌
𝛼𝑡 +

1

2

𝜕2𝑓

𝜕𝑋2
𝜎𝑡
2 +

1

2

𝜕2𝑓

𝜕𝑌2
𝛽𝑡
2 +

𝜕2𝑓

𝜕𝑌𝜕𝑋
𝜎𝑡𝛽𝑡𝜌)𝑑𝑡 +

𝜕𝑓

𝜕𝑋
𝜎𝑑𝐵1,𝑡

+
𝜕𝑓

𝜕𝑌
𝛽𝑑𝐵2,𝑡 

 

f. Itô Isometry 

Another useful implication quadratic variation is a property called “Itô Isometry”, which states 

that for any “adapted” function f (see definition in section 6.d): 

𝑣𝑎𝑟0 (∫ 𝑓(𝑡, 𝐵𝑡)𝑑𝐵𝑡

𝑇

0

) = 𝐸0 (∫ 𝑓(𝑡, 𝐵𝑡)
2𝑑𝑡

𝑇

0

) 

This is useful for calculating the variance of stochastic processes. 

To see why this is, first note that because 𝐸0 (∫ 𝑓(𝑡, 𝐵𝑡)𝑑𝐵𝑡
𝑇

0
) = 0 (again, see section 6.d): 

𝑣𝑎𝑟0 (∫ 𝑓(𝑡, 𝐵𝑡)𝑑𝐵𝑡

𝑇

0

) = 𝐸0 ((∫ 𝑓(𝑡, 𝐵𝑡)𝑑𝐵𝑡

𝑇

0

)

2

) 

Then note that all of the increments of 𝐵𝑡 are independent, by the definition of Brownian 

motion. So when we square the integral, all of the products of the 𝐵𝑡 increments from different 

time periods will have 0 expectation. So we’ll just be left with: 

𝐸0 (∫ 𝑓(𝑡, 𝐵𝑡)
2𝑑𝐵𝑡

2
𝑇

0

) = 𝐸0 (∫ 𝑓(𝑡, 𝐵𝑡)
2𝑑𝑡

𝑇

0

) 

If that doesn’t make sense to you, you can think of what’s going on using summation notation. 

Independent increments of Brownian motion implies: 

𝐸0 ((𝐵 (
𝑖

𝑛
𝑇) − 𝐵 (

𝑖 − 1

𝑛
𝑇))(𝐵 (

𝑗

𝑛
𝑇) − 𝐵 (

𝑗 − 1

𝑛
𝑇))) = 0   𝑓𝑜𝑟 𝑖 ≠ 𝑗 

So: 

𝐸0 ((∫ 𝑓(𝑡, 𝐵𝑡)𝑑𝐵𝑡

𝑇

0

)

2

) = 𝐸0 (( lim
𝑛→∞

∑𝑓(
𝑖 − 1

𝑛
𝑇)(𝐵 (

𝑖

𝑛
𝑇) − 𝐵 (

𝑖 − 1

𝑛
𝑇))

𝑛

𝑖=1

)

2

)

= 𝐸0 ( lim
𝑛→∞

∑𝑓(
𝑖 − 1

𝑛
𝑇)

2

(𝐵 (
𝑖

𝑛
𝑇) − 𝐵 (

𝑖 − 1

𝑛
𝑇))

2𝑛

𝑖=1

) = ∫ 𝑓(𝑡, 𝐵𝑡)
2𝑑𝑡

𝑇

0

 

 

  



8. Pricing an asset 

Now we have all the tools we need to tackle pricing problems using the two different methods. 

Suppose we have some derivative that we know at time T will pay off some function of a stock 

price 𝐹(𝑆𝑇). If the stock price follows some Itô process: 

𝑑𝑆𝑡 = 𝜇(𝑡, 𝑆𝑡)𝑑𝑡 + 𝜎(𝑡, 𝑆𝑡)𝑑𝐵𝑡 

(e.g. if 𝜎(𝑡, 𝑆𝑡) = 𝜎𝑆𝑡 and 𝜇(𝑡, 𝑆𝑡) = 𝜇𝑆𝑡 then we have geometric Brownian motion with drift) 

How does the price of the derivative evolve over time? Let’s assume the derivative price at time 

t is a function of t and the stock price and call it 𝑓(𝑡, 𝑆𝑡). 

We have two possible approaches here – directly calculate the risk neutral expectation of 𝐹(𝑆𝑇), 

or solve for the price using differential equations. There is a theorem (which we will not cover) 

called the “Feynman-Kac theorem” that guarantees that these two approaches will always give 

the same answer. 

a. Direct approach (aka “Martingale method”) 

Just as in discrete time, one path to the solution is to use the Fundamental Theorem of Asset 

Pricing, which tells us that the price is be the risk-neutral expectation of its discounted payoff. 

So under the risk neutral measure Q: 

𝑓(𝑡, 𝑆𝑡) = 𝐸𝑡
𝑄
(

1

𝑅𝑓,𝑡→𝑇
𝐹(𝑆𝑇)) 

If the risk free rate is constant (as we will often assume), then we can write this: 

𝑓(𝑡, 𝑆𝑡) = 𝑒
−𝑟(𝑇−𝑡)𝐸𝑡

𝑄
(𝐹(𝑆𝑇)) 

We can then  find 𝑓(𝑡, 𝑆𝑡) by just computing this expectation using the risk neutral distribution 

of 𝑆𝑇 , numerically or analytically. E.g. if 𝑆𝑡 is a geometric Brownian motion, then 𝑆𝑇 is 

lognormally distributed over discrete intervals. 

This sounds simple, but it can be challenging to find 𝐸𝑡
𝑄
(𝐹(𝑆𝑇)) if 𝑆𝑇 does not have a simple 

closed form solution or 𝐹(𝑆𝑇) is not a standard distribution like lognormal. 

Note: In general, this is called the “martingale method”. It is so called because it uses the fact 

that the asset price divided by the price of the risk free asset (i.e. multiplied by the risk free rate) 

is a martingale under the risk neutral measure: 

𝐸𝑡 (𝑅𝑓,𝑣→𝑇𝑓(𝑣, 𝑆𝑣)) = 𝐸𝑡 (𝐸𝑣(𝑓(𝑣, 𝑆𝑣))) = 𝑅𝑓,𝑡→𝑇𝑓(𝑡, 𝑆𝑡) 

 

b. Differential equations 

Deriving the SDE for the asset 

Just as in the deterministic continuous time section, another approach is to find a differential 

equation that defines the path of prices. 

Suppose again we have a derivative that pays off 𝐹(𝑆𝑇) at time T, and  

𝑑𝑆𝑡 = 𝜇(𝑡, 𝑆𝑡)𝑑𝑡 + 𝜎(𝑡, 𝑆𝑡)𝑑𝐵𝑡 

And we want to find the derivative price 𝑓(𝑡, 𝑆𝑡) 



By applying Itô’s lemma, we can find the SDE for describing the evolution of 𝑓(𝑡, 𝑆𝑡): 

𝑑𝑓(𝑡, 𝑆𝑡) = (
𝜕𝑓

𝜕𝑡
+ 𝜇(𝑡, 𝑆𝑡)

𝜕𝑓

𝜕𝑆
+
1

2
𝜎(𝑡, 𝑆𝑡)

2
𝜕2𝑓

𝜕𝑆2
)𝑑𝑡 + 𝜎(𝑡, 𝑆𝑡)

𝜕𝑓

𝜕𝑆
𝑑𝐵𝑡 

Determining the pricing PDE 

In the deterministic model, all assets must have a return of 𝑟𝑡 at all times, so we could find the 

price by just imposing 𝑑𝑓(𝑡, 𝑆𝑡) = 𝑓(𝑡, 𝑆𝑡)𝑟𝑡𝑑𝑡. With stochastic returns things are not so simple 

because there can be a risk premium. So how do we come up with an equivalent equation? 

One way is to use the risk neutral measure. Under the risk neutral measure, all assets have an 

expected return of 𝑟𝑡. So we rewrite the SDE for the stock under the risk free measure as: 

𝑑𝑆𝑡 = 𝑆𝑡𝑟𝑡𝑑𝑡 + 𝜎(𝑡, 𝑆𝑡)𝑑𝐵𝑡
𝑄 

And, since the asset must also have risk neutral expected returns of 𝑟𝑡, we have: 

𝐸𝑡
𝑄
(𝑑𝑓(𝑡, 𝑆𝑡)) = (

𝜕𝑓

𝜕𝑡
+ 𝑆𝑡𝑟𝑡

𝜕𝑓

𝜕𝑆
+
1

2
𝜎(𝑡, 𝑆𝑡)

2
𝜕2𝑓

𝜕𝑆2
)𝑑𝑡 = 𝑟𝑡𝑓(𝑡, 𝑆𝑡)𝑑𝑡 

Or, dropping the 𝑑𝑡: 

𝑟𝑡𝑓(𝑡, 𝑆𝑡) =
𝜕𝑓

𝜕𝑡
+ 𝑆𝑡𝑟𝑡

𝜕𝑓

𝜕𝑆
+
1

2
𝜎(𝑡, 𝑆𝑡)

2
𝜕2𝑓

𝜕𝑆2
 

We call this the “pricing partial differential equation (PDE)”. It is called a PDE, not an SDE 

because we have removed the stochastic element (𝑑𝐵𝑡
𝑄). This equation can be solved 

numerically or in some cases analytically to find the price.  

Note that this is the continuous time equivalent of the binomial option pricing model you 

learned. If you reread that section of the lecture notes you will clearly see the parallels. 

Determining the pricing PDE by replicating portfolios 

A second way to arrive at the same pricing PDE, is through a no arbitrage logic.  

If we can construct a portfolio composed of the derivative and the stock that gives us a risk-free 

return, then the return on the portfolio must be the risk free rate.  

From the SDE for f, we can see that the derivative’s diffusion term – i.e. its exposure to the 

stock’s Brownian motion – is 𝜎(𝑡, 𝑆𝑡)
𝜕𝑓

𝜕𝑆
, whereas the stock’s is 𝜎(𝑡, 𝑆𝑡). So if we hold 1 unit of the 

derivative and go short 
𝜕𝑓

𝜕𝑆
 units of the stock we will have no exposure to the Brownian motion 

and returns will be entirely deterministic and risk free. 

Let’s call this hedged portfolio 𝜃𝑡 = 𝑓(𝑡, 𝑆𝑡) −
𝜕𝑓

𝜕𝑆
𝑆𝑡. We can easily find the differential equation 

that defines the path of its values: 

𝑑𝜃𝑡 = 𝑑𝑓(𝑡, 𝑆𝑡) −
𝜕𝑓

𝜕𝑆
𝑑𝑆𝑡 = (

𝜕𝑓

𝜕𝑡
+
1

2
𝜎(𝑡, 𝑆𝑡)

2
𝜕2𝑓

𝜕𝑆2
)𝑑𝑡 

Since the hedged portfolio has a risk free return, by no arbitrage it must return the risk free 

rate! 

𝑑𝜃𝑡
𝜃𝑡

= 𝑟𝑡𝑑𝑡 

So plugging in and rearranging gives us the same pricing PDE that we derived using the risk 

neutral measure: 



(
𝜕𝑓

𝜕𝑡
+
1

2
𝜎(𝑡, 𝑆𝑡)

2
𝜕2𝑓

𝜕𝑆2
)𝑑𝑡 = (𝑓(𝑡, 𝑆𝑡) −

𝜕𝑓

𝜕𝑆
𝑆𝑡) 𝑟𝑡𝑑𝑡 

𝑟𝑡𝑓(𝑡, 𝑆𝑡) =
𝜕𝑓

𝜕𝑡
+ 𝑆𝑡𝑟𝑡

𝜕𝑓

𝜕𝑆
+
1

2
𝜎(𝑡, 𝑆𝑡)

2
𝜕2𝑓

𝜕𝑆2
 

And a terminal condition 𝑓(𝑇, 𝑆𝑇) = 𝐹(𝑆𝑡) 

Black Scholes PDE 

Often, we will not allow 𝑟𝑡 and 𝜎 to both be time varying in this course, because it makes finding 

solutions very difficult. If 𝜎(𝑡, 𝑆𝑡) = 𝑆𝑡𝜎, and 𝑟𝑡 = 𝑟, then this is known as the Black Scholes PDE: 

𝑟𝑓(𝑡, 𝑆𝑡) =
𝜕𝑓

𝜕𝑡
+ 𝑆𝑡𝑟

𝜕𝑓

𝜕𝑆
+
1

2
𝑆𝑡
2𝜎2

𝜕2𝑓

𝜕𝑆2
 

c. Solving PDEs and SDEs 

Differential equations generally have unique solutions for a given initial condition, as long as the 

drift and diffusions are “reasonable.”3 This is why they turn out to be quite useful! However, 

these solutions are rarely available in closed form. 

If a closed form solution exists, there is no specific process you can always follow to find it. You 

may need to conjecture a form for the solution, and then differentiate it to find the value of the 

coefficients. 

At times you may also be able to simplify the problem by adding additional conditions based on 

the nature of the problem: e.g. maybe you can figure out what the price should be as the 

underlying asset price approaches 0 or infinity, or if the object is an infinitely lived option, 

perhaps you could impose that its price should not be a function of time (so 
𝜕𝑓

𝜕𝑡
= 0). 

You have already solved one SDE in the exercises: the Brownian motion with constant drift 

(
𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡). A more difficult example employing the method of conjecturing a solution is 

provided in the appendix. 

In the large majority of cases in actual practice there are no closed form solutions. Instead, 

numerical methods are used. Typically these are: 

• Finite differences: Take your starting point and take small steps using first order Taylor 

approximation (this can only be applied to PDEs with no stochastic component) 

• Monte Carlo: As above, but draw small independent random numbers at each step to 

simulate your 𝐵𝑡 increments 

• Tree methods: Using the fact that a Brownian motion is the limit of a random walk, split 

the space from 0 to T into a number of small steps and find all the possible values at time 

T of this random walk and the probability of each. 

If you’re interested in more detail on how these work you can check, for example, “Options, 

futures, and other derivatives” by John Hull. 

  

 

3 Formally, SDEs must satisfy some regularity conditions, including a space-variable Lipshitz condition 
and a spatial growth condition, but these are not very interesting for us. 



9. Wrapping up 

We’ve covered a lot of content this week. You will not need to know every detail and proof in 

these notes for the exam. If you can understand and remember the following 10 key pieces of 

information, you should do well in the last few weeks of FM436: 

1. Brownian motion is normally distributed over all intervals, and each increment is 

independent. 

2. Brownian motion is the limit of a random walk 

3. Brownian motion is not differentiable 

4. You can switch between the physical and risk neutral measure, and the only thing that 

changes is the drift term 

5. What stochastic differential equations look like and mean 

6. If a SDE has no drift, then the process is a martingale (and vice versa) 

7. 𝑑𝐵𝑡
2 = 𝑑𝑡 and  𝑑𝐵𝑡𝑑𝑡 = 0 and 𝑑𝐵𝑡𝑑𝑍𝑡 = 𝜌𝑑𝑡  

8. Itô’s lemma 

9. To find the price a European derivative you can either take the expected discounted 

payoffs under the risk free measure (the “martingale method”) or derive a PDE for the 

prices  

10. PDEs and SDEs generally have solutions but usually not analytical ones. 

  



Appendix: Probability space vocabulary terminology 

If you read any textbooks or articles that cover this material, you are likely to encounter some of 

the basic probability theory terminology described here. 

A proof or example often starts with the sentence: “Consider a probability space (Ω, ℱ, ℙ) and a 

filtration 𝔽” 

𝜔 is a state – e.g. heads for a coin flip, or a sample Brownian path for a Brownian motion. 

Ω, the sample space, denotes the set of all possible states, e.g. {𝜔1, 𝜔2, 𝜔3, 𝜔4} 

An event is a subset of states: 𝐴 ⊆ Ω – e.g. you have at least two heads, or the sample path 

crosses above 2 before time T. 

ℱ, the sigma-algebra, is a collection of events such that: 1. It includes Ω itself, and 2. It is closed 

to unions and complements. Intuitively ℱ, describes how “refined” our information is. E.g. 

{{𝜔1, 𝜔2}, {𝜔3, 𝜔4}, Ω, ∅}. For example,f we play a game where someone flips two coins and tells 

me how many were heads or tails, the sigma algebra would be {{HH}, {TT}, {HT, TH}} 

𝔽, the filtration, is a sequence of sigma-algebras (ℱ)𝑡≥0, that describes the evolution of our 

information over time. E.g. if I repeat the coin flip game described in the sigma-algebra section 

twice, the filtration is first: {{HH}, {TT}, {HT, TH}}, and second: all the permutations of possible 

results from the first round and from the second round. 

ℙ, the probability measure, assigns probabilities to events in ℱ in a consistent way. It is a 

mapping ℙ: ℱ → [0,1] such that: 

• ℙ(Ω) = 1 

• ℙ(∅) = 1, and for 𝐴 ∈ ℱ,ℙ(𝐴) ≥ 0 

• For disjoint events 𝐴𝑖 ∈ ℱ: 

ℙ(⋃𝐴𝑖) =∑ℙ(𝐴𝑖)

𝑖

 

 

  



Appendix: Quadratic covariation 

a. Quadratic covariation of two Brownian motions: 

Suppose we have two correlated Brownian motions B and Z. By the same logic as quadratic 

variation we can define quadratic covariation as 

lim
n→∞

∑(𝐵(
𝑖

𝑛
𝑇) − 𝐵 (

𝑖 − 1

𝑛
𝑇))(𝑍 (

𝑖

𝑛
𝑇) − 𝑍 (

𝑖 − 1

𝑛
𝑇))

𝑛

𝑖=1

 

It’s straightforward to show by the law of large numbers this is equal to 𝜌𝑇 

We could write this fact as: 𝑑𝐵𝑡𝑑𝑍𝑡 = 𝜌𝑑𝑡. I.e. if you sum up all the little changes in 𝐵𝑡 multiplied 

by the little changes in 𝑍𝑡 , you get the correlation times the changes in t. 

b. Quadratic covariation of Brownian motion with a differentiable function: 

Note also that for any differentiable function of time 𝑓(𝑡), the quadratic covariation with a 

Brownian motion will be 0 – you can verify this using the same logic we used to show the 

quadratic variation of a differentiable function is 0. If we consider the function 𝑓(𝑡) = 𝑡, this 

gives us the important fact: 𝑑𝐵𝑡𝑑𝑡 = 0 and  𝑑𝑡2 = 0. I.e. if you sum up all the little changes in 𝐵𝑡 

multiplied by t, you get 0.  

c. Higher order variation of a Brownian motion: 

In general, for a standard normal X with mean 0 and variance 𝜎2: 

𝐸(𝑋𝑘) = {
0 𝑖𝑓 𝑘 𝑖𝑠 𝑜𝑑𝑑

(𝑘 − 1)‼𝜎𝑘  𝑖𝑓 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛
 

So  

𝐸 ((𝐵 (
𝑖

𝑛
𝑇) − 𝐵 (

𝑖 − 1

𝑛
𝑇))

𝑘

) = {

0 𝑖𝑓 𝑘 𝑖𝑠 𝑜𝑑𝑑

(𝑘 − 1)‼ (
𝑇

𝑛
)
𝑘

 𝑖𝑓 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛
 

 

lim
n→∞

∑(𝐵(
𝑖

𝑛
𝑇) − 𝐵 (

𝑖 − 1

𝑛
𝑇))

𝑛

𝑖=1

𝑘

→𝑝 lim
n→∞

𝑛𝐸 ((𝐵 (
𝑖

𝑛
𝑇) − 𝐵 (

𝑖 − 1

𝑛
𝑇))

𝑘

) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑘 > 2 

 

  



Appendix: Example of solving a SDE 

The “Ornstein-Uhlenbeck” process is defined by the SDE: 

𝑑𝑋𝑡 = −𝛼𝑋𝑡𝑑𝑡 + 𝜎𝐵𝑡;      𝑋0 = 𝑥0 

This process is frequently used to describe random processes that revert to a mean (𝛼). E.g. the 

risk free short term interest rate is often modelled with this process. Can you see based on the 

SDE why it would show mean reversion? 

If we want to solve for 𝑋𝑡 we’ll need to conjecture a form. Because of the mean-reverting 

property, we might consider that the solution involves some decaying weighted average of past 

increments of 𝐵𝑡. I.e. we want old increments of 𝐵𝑡 to “matter less” as time passes and the 

process reverts to the mean. So we could conjecture: 

𝑋𝑡 = 𝑓(𝑡, 𝐵𝑡) = 𝑎(𝑡) (𝑥0 + ∫ 𝑏(𝑠)𝑑𝐵𝑠
𝑡

0
) for some functions a and b of t, with a(0)=1 

Don’t worry: you aren’t expected to be able to come up with this conjecture on your own! Now 

to see if this conjecture works for some a and b, we differentiate X: 

𝑑𝑓(𝑡, 𝐵𝑡)

𝑑𝑡
=
𝑎′(𝑡)

𝑎(𝑡)
𝑓(𝑡, 𝐵𝑡) 

𝑑𝑓(𝑡, 𝐵𝑡)

𝑑𝐵𝑡
= 𝑎(𝑡)𝑏(𝑡)𝑑𝐵𝑡 

𝑑𝑓2(𝑡, 𝐵𝑡)

𝑑𝐵𝑡
2 = 0 

So applying Itô’s lemma: 

𝑑𝑋𝑡 =
𝑎′(𝑡)

𝑎(𝑡)
𝑋𝑡𝑑𝑡 + 𝑎(𝑡)𝑏(𝑡)𝑑𝐵𝑡  

Now we can match our coefficients. The process was defined by: 

𝑑𝑋𝑡 = −𝛼𝑋𝑡𝑑𝑡 + 𝜎𝐵𝑡 

And our conjectured form gives us: 

𝑑𝑋𝑡 =
𝑎′(𝑡)

𝑎(𝑡)
𝑋𝑡𝑑𝑡 + 𝑎(𝑡)𝑏(𝑡)𝑑𝐵𝑡  

So if the conjecture is right, then we would need: 
𝑎′(𝑡)

𝑎(𝑡)
= −𝛼 

𝑎(𝑡)𝑏(𝑡) = 𝜎 

This is satisfied if: 

𝑎(𝑡) = 𝑒−𝛼𝑡 

𝑏(𝑡) = 𝜎𝑒𝛼𝑡 

So our conjecture works. Thus the solution to the SDE is given by: 

𝑋𝑡 = 𝑓(𝑡, 𝐵𝑡) = 𝑒
−𝛼𝑡 (𝑥0 + 𝜎∫ 𝑒𝛼𝑠𝑑𝐵𝑠

𝑡

0

) 

 


