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Bye Bye Beta:
Deposit Duration with Fixed Spreads

Abstract

Based on empirical patterns in deposit rates, I value bank deposits as interest

rate caps with fixed spreads, rather than as fixed-beta liabilities. This approach

generates dramatically time-varying duration: the effect of a 1 ppt increase

in interest rates on the value of banks varies from −5-10% in 2006 to +75%

when rates were near zero in 2020. Deposits spreads alone create this negative

duration at low rates; no assumptions about fixed costs or deposit runoff are

needed. The model predicts bank stock price responses to monetary shocks

with the correct sign and magnitude, while existing duration measures fail or

predict with the wrong sign. These findings imply that bank duration hedging

incentives and even monetary policy effectiveness can vary dramatically with

the interest rate level.
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Do banks benefit or suffer from interest rate changes? This question lies at the heart

of monetary policy transmission and financial stability, yet we lack consensus even on its

sign. Banks usually claim they benefit from rising rates,1 while prominent academic work

argues either the opposite (DeMarzo et al., 2024), or that banks have minimal rate exposure

(Drechsler, Savov, and Schnabl, 2021), or that they can benefit from increases when rates

are low (Greenwald, Schulhofer-Wohl, and Younger, 2023).

I measure banks’ interest rate exposure and show it varies with the level of rates, switch-

ing from positive to negative as rates change. When rates are high, banks maintain roughly

constant long term spreads between what they earn and what they pay depositors. By

standard asset-pricing logic, higher rates mean lower asset values, so duration is positive.

But when rates fall close to zero, banks can’t push deposit rates below zero. The spread

compresses, and bank profits suffer. Duration therefore turns highly negative.

This time-varying duration measurement resolves three important questions for bank

researchers. First, does the deposit franchise hedge the interest rate risk of assets, allowing

for safer long term lending (Drechsler et al., 2021), or does it actually add to the interest

rate risk (DeMarzo et al., 2024)? I find it can hedge, and even over-hedge, asset interest

rate risk, but only when rates are low.

Second, why doesn’t the duration of bank assets predict how their stocks respond to

interest rate changes (Haddad and Sraer, 2020)? All existing time-varying measures of bank

duration completely fail to predict how bank stock prices respond to monetary shocks.2

I show they fail because the size and variance of the deposit franchise duration is much

larger than asset duration. I create a new measure that accurately predicts the time varying

magnitude of the effects of monetary shocks on bank value.

Third, why did banks load up on long-term securities during the low-rate period? I

argue it helped hedge their large exposure to rate changes through deposits.

1See DeMarzo, Krishnamurthy, and Nagel (2024) for a summary of bank 10-K interest rate risk dis-
closures claiming that rate rises increase bank value

2See section 3 for the different measures and their performance
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Figure 1: Demand deposit rate and risk-free rate rate. Aggregate quarterly rate of
interest income on interest-paying savings and transaction deposits from the FFEIC call
reports vs 1-quarter risk-free spot rate from Gürkaynak et al. (2007), 1987-2023.

The key insight is to depart from the standard “deposit beta” framework where deposit

rates move in proportion to market rates (e.g. Drechsler, Savov, and Schnabl, 2017; Drech-

sler et al., 2021; DeMarzo et al., 2024, and many others). This assumption works well over

the short term, but does not seem to fit the data well in the long term. Figure 1 shows

time series of savings deposit rates. Peak-to-peak or trough-to-trough, spreads weren’t

systematically higher in the high-rate 1980s and 1990s than they are now. Deposit rates

largely tracked the secular decline in market rates, until they hit zero.

I test this visual intuition with a flexible econometric model of deposit interest rates

that nests fixed betas and fixed spreads. After allowing for a zero bound and delays in

pass-through, the estimation soundly rejects a low long-term beta. Instead rates seem to

follow a fixed but lagging spread in the long term (i.e. rf − δ instead of rf × β).3

This evidence is consistent with several papers that document time-varying deposit pass-

through (e.g. Greenwald et al., 2023; Wang, 2020; Kang-Landsberg, Luck, and Plosser,

2023). Going one step further and measuring the long term response function of deposit

rates to risk-free rates, allows me to value the full cash flows of deposits.

3The lag is long enough to make my one year pass-through completely compatible to the pass-through
evidence from Drechsler et al. (2021)
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Figure 2: Deposit value as a function of interest rate with fixed spread or fixed
beta. The blue line plots estimated franchise value of all US demand deposits divided by
total book equity in 2019 Q4 if interest rates were shifted up or down from the actual rate
of 1.6%, as calculated in this paper. The orange plots the value if calculated using a fixed
deposit beta of 0.65 instead.

Deposit rates appear to act like a call option on interest rates ( a “cap”) in the long

term. Finding the value and duration of deposits is therefore a derivative pricing exercise.

I employ standard interest rate derivative pricing tools, combined with data on the market

prices of caps and floors to calculate the market value and duration of deposits at every

quarter for every bank. Figure 2 shows how the deposit franchise value responds to shifts

in the interest rate in blue.

This new measure of bank duration gives striking predictions for the effect of monetary

policy on bank value. When rates were high, as in 2006, a one ppt surprise rate hike would

knock 5-10% off of the value of banks. But in 2020, the same surprise would send value

soaring by up to 75%.

Importantly, this negative duration arises purely from the interaction of fixed spreads

with the zero bound. Fixed beta models naturally result in low positive durations estimates

because the profit of the bank can be decomposed into some part that is proportional to
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rates (and thus has 0 duration) and some part that is fixed (and thus has a positive

duration).

As a result, existing literature based on the deposit beta framework has had to assume

either high fixed costs or high deposit runoff rates to deliver a negative duration at low rates

(Drechsler, Savov, Schnabl, and Wang, 2023; Greenwald et al., 2023). These assumptions

can be difficult to interpret in the context of a growing deposit base, and apparently positive

net franchise fixed profitability (DeMarzo et al., 2024).

However, if deposit spreads function like a cap, they will have negative duration at

sufficiently low rates. The key insight, developed formally in Section 2, is that very low

rates increase the present value of future deposit payments. When rates are near zero today

but expected to normalize eventually, the bank faces large future interest payments with

high present value. A small rate increase today brings forward the date of normalization,

reducing the present value of those distant payments. This creates negative duration even

without any fixed costs or deposit runoff.

I test these predictions using high-frequency monetary policy shocks (as in e.g. Naka-

mura and Steinsson, 2018; Gürkaynak, Karasoy-can, and Lee, 2022). During short windows

around monetary announcements, I assume news is purely about rates, not bank funda-

mentals.

The model’s predictions match the high frequency evidence in both sign and magnitude

and with a high degree of statistical significance. Figure 3 plots my measure of predicted

interest rate risk next to the rolling effects of high frequency shocks, showing the similarity

of the patterns. In contrast, all other measures of bank duration that I can construct from

the existing literature either fail to predict the effects, or predict them with the wrong sign.

As a second application, I use my measure to explain bank purchases of long term

securities 2010-2021. Banks loaded up on long-maturity securities during the low rate

period, setting the stage for the 2023 regional bank crisis (Jiang, Matvos, Piskorski, and

Seru, 2023). A typical “reach for yield” type explanation of this behavior does not work
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Figure 3: Predicted (orange) vs observed (blue) effect of rate shocks on bank
values. The orange line shows the predicted interest rate risk of banks (i.e. negative dura-
tion – see section E for details). The blue line shows the effects of high frequency monetary
shocks to long-term yields on bank returns, measured by a rolling 2 year regression (details
in section 3). The financial crisis (2007 H2 - 2009 H1) is shaded in grey.

well, because the purchases mostly occurred when spreads between long and short term

yields were at all time lows.

My measure of deposit duration shows that as rates lowered, the value of the deposit

franchise became more and more positively exposed to rate hikes, so long-term assets

became a hedge. Consistent with this story, I show that banks with the most demand

deposits and highest fixed deposit spreads, i.e. whose profits were most compressed by low

rates, are the ones who increased their asset duration the most.

The rest of the paper is arranged as follows: section 1 estimates the deposit rate dy-

namics. Section 2 calculates the implied deposit market values. Section 3 validates the

duration measure against stock price reactions to monetary shocks. Section 4 connects the

dots to banks’ reach for yield in long-term securities. A brief conclusion wraps things up.
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1 Deposit spreads

Empirical work on bank deposits often assumes that deposit spreads are proportional to

risk-free rates, i.e. a fixed deposit beta (e.g. Drechsler et al., 2021; DeMarzo et al., 2024).

However, this is not the only or obvious outcome of theory. Discrete choice models used

in the industrial organization literature tend to deliver spreads that are roughly constant

with respect to the risk-free rate. This is true for both simple logit-based exercises (e.g.

Dick, 2008) and more thorough modeling of the competition between deposits and cash

(Wang, Whited, Wu, and Xiao, 2022).4

This section therefore differentiates between the “fixed beta” and “fixed spread” models

by testing a general model that allows deposit spreads to be fixed or proportional, and to

have an arbitrary lag. In appendix A I show that the empirical model can be derived from

a discrete-choice model of bank competition with a zero lower bound.

1.1 Model

In this section I specify the simplest time series model of deposits that allows for a) a

delay in deposit pass-through, b) a 0 floor on deposit interest rates, and c) either fixed or

proportional spreads

The time series of deposit rates, shown in figure 1, clearly shows greater long-term than

short-term pass-through — for example, deposit rates pictured in figure 1 showed a small

response to the sudden drop in risk-free rates in 2001, but seem to have mostly followed the

long decline from 1990 to 2010. I therefore allow average deposit rates to follow a simple

AR1 relationship with the short-term risk-free rate:

rdt = γrdt−1 + β(1− γ)(rft − δ) + εt (1)

Where rd is the rate of a deposit and rf is the risk free rate.
4E.g. figure 4 from Wang et al. (2022) shows that modeled pass-through is approximately 1 when the

risk-free rate is over 2%.
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This is a standard AR1 equation with one exogenous variable. I have simply expressed

the constant parameter as β(1−γ)δ and the coefficient of the exogenous variable as β(1−γ)

to give the variables intuitive interpretations. The parameter δ represents the long-term

fixed spread between deposit rates and the risk free rate, as we would expect in a simple

discrete-choice model. The parameter β represents the long term proportional spread as in

Drechsler et al. (2021). And γ allows for delays in deposit pass-through, which have been

empirically well documented since at least Hannan and Berger (1991).

If δ > 0 this model would lead to negative deposit rates when the risk-free rate is low.

Since in reality we do not observe any significant negative deposit rates, I add a second

equation imposing that no depositors are paid less than 0. This can be interpreted as the

result of competition with cash, or institutional or legal restrictions.

Since I only observe deposits at a bank level, aggregated across many types of depositors

paid different rates (small, large, corporate, retail, etc), I must assume that there is some

unobserved heterogeneity in rates represented by a depositor-specific error term (ηj). The

observed deposit rate rot is therefore given by:

rot = E
(
max

{
rdt + ηj, 0

})
Where E denotes the cross-sectional expectation across depositors.5

If I assume the cross-sectional distribution of deposit errors, η, is normal with variance

s2, then the observed rate is given by:

rot = β(r̃t − δ) Φ

(
r̃t − δ

s

)
︸ ︷︷ ︸
Share paid > 0

+ βsϕ

(
r̃t − δ

s

)
︸ ︷︷ ︸

Adjustment from censoring lowest-paid

(2)

Importantly, this model nests the simple constant β model used in Drechsler et al.

5The contemporaneous paper Xu (2024) takes a similar approach to estimating deposit rate response
to interest rate changes.
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(2023), DeMarzo et al. (2024), and other papers, if δ = 0 and s = 0.

While the motivation for the model is primarily empirical, I microfound this pattern of

deposit rates from a simple discrete choice model in appendix A.

1.2 Estimation

I fit equations 1 and 2 onto quarterly deposit interest rate data from 1987 Q1 to 2023

Q2 using maximum likelihood estimation. Bank Data is compiled from the FFIEC call

reports.6 For the bank-level analysis, I include data quality filters described in appendix

C.1. For quarterly risk-free rates, I use the treasury curve data from Gürkaynak et al.

(2007).

I estimate the deposit rate function for interest-paying demand deposits only, covering

approximately 70% of domestic deposits 2002–2023.7 Time deposits and non-interest-

paying demand constitute another 30% of deposits and are included separately in the

calculation of bank value in section 3.

1.3 Results

Table 1 reports the estimated coefficients. It turns out that the fixed spread (δ) and pass-

through rate (γ) parameters are tightly identified by the data. We can conclusively reject

a 0-fixed-spread model for savings deposits with a high degree of statistical significance.

The long term profitability and value of deposits comes from a fixed spread of approx-

imately 2%. If we assume for some back–of–the–envelope calculations that the long term

discount rate is 5%, then the value of a permanent flow of the fixed spread would be
2%
5%

= 40% of the total book value of demand deposits. Hence the compression of this fixed

spread as rates go to 0 will have a large impact on the value of the bank, as I will show in

section 2.

6The starting point for the SAS code to download the call report data was taken from Alexi Savov’s
website. I am grateful to Alexi and coauthors for making this code available.

7I combine savings accounts and interest-paying transaction accounts because the regulatory distinction
between these accounts disappeared during the period under study.
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Coefficient & description Beta ̸= 1 Beta = 1

δ Fixed spread 0.019 0.022
(0.005) (0.005)

β Long-term pass-through 0.940 1
(0.110)

γ Pass-through delay 0.788 0.788
(0.031) (0.040)

s Zero bound phase-in rate 0.017 0.019
(0.004) (0.006)

σ Error standard deviation 0.002 0.002
(0.000) (0.000)

Table 1: Aggregate deposit parameter estimates. Estimates from maximum likeli-
hood estimation of model specified in section 1.1 on the time-series of quarterly aggregate
commercial-bank data from US call reports, 1987-2023. The right column shows the esti-
mation restricted to impose a beta of 1. Numbers in parentheses show GMM Newey-West
standard errors with 4 lags.
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The long-term pass-through at high rates (β) does not seem to as important. The

estimate is near 1. Indeed, the model restricted to impose β = 1 shows slightly better out–

of–sample prediction ability (see results in section 1.5). I therefore use the β = 1 model as

the baseline for my calculations in the remaining section. At low rates, pass-through will

be somewhat lower than 1 due to the zero floor and the cross-sectional variance.

I also estimate bank-specific coefficients, with results summarized in appendix C.3.

The average bank results are similar to the aggregate, although with considerable cross-

sectional standard deviation. High δ is correlated with large size and high fixed costs,

although, surprisingly, not with local branch concentration.

1.4 Comparison with Drechsler et al. (2021) and DeMarzo et al.
(2024)

Previous work has found instead that deposits have a low β to the risk-free rate and no fixed

spread. Drechsler et al. (2021) estimate that average bank interest expense has a beta of

just 0.35, and DeMarzo et al. (2024) estimate that average deposit betas are approximately

60%.8

My findings differ for three reasons. First, I allow for spreads to follow an autoregressive

process. Figure 4 plots the value of demand deposit rates vs the risk free rates, with

sequential points connected. Visually, the low short-term pass-through traces out a series

of shallow lines with a slope of < 1
2
, but the long term trend moves up down a much

steeper slope of roughly 1. Drechsler et al. (2021) regress annual changes in deposit rates

on risk-free rates, and thus measure this low short term pass-through instead of the long

term relationship. Their average β of 0.35 resembles the 1-year pass-through rate implied

by my estimation of γ4 = 0.4.

Second, I allow for a zero lower bound and non-linearity. There are no observations

with negative deposit rates and a number of quarters with 0 risk-free rates. So a linear

8Aggregate deposit spreads are estimated as rf × 0.24× assets. Deposits are 60% of assets on average
during the period, implying 1− β ≈ 40%
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Figure 4: Demand deposit rate and risk-free rate. Aggregate quarterly rate of inter-
est income on interest-paying demand deposits from the FFEIC call reports vs quarterly
risk-free rates, 1987-2023. The dotted line shows the 45 degree line where rd = rf .

regression in levels will always find that the intercept (i.e. fixed spread) is 0. In other words

it will interpret the fact that deposit rates did not become negative when risk-free rates

were near–0 as proof that long-term pass-through is low rather than proof of a distinct

lower bound.

DeMarzo et al. (2024) find a higher pass-through than Drechsler et al. (2021) because

they run their regression in levels and allow for some time series dynamics by incorporating

swap rates. However, they still assume a linear relationship and hence find no fixed spread

and a low pass-through.

Third, I run my analysis on interest-paying demand deposits only, whereas Drechsler

et al. (2021) and DeMarzo et al. (2024) include all deposits. Aggregating all deposits would

drive my β estimate down to roughly 0.8, but is problematic because it mixes long-term

secular trends on deposit types with interest rate effects.

The share of domestic deposits that paid no interest saw a steady decline throughout

the 1990s and 2000s from a peak of 23% in the late 1980s to 8% just before the financial

crisis in 2007. This change mechanically increased the aggregate deposit rates as interest

rates lowered. E.g. in 1989 savings deposits rates are 30 basis points above the aggregate
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deposit rate, but by 2007 they are 60 bp below it.

If we value a static deposit quantity based on this historical aggregate deposit rate rate,

we would be implicitly assuming that if rates increase to their early 1990s levels, the share

of non-interest-paying deposits will increase. This assumption seems implausible, since we

would expect that a higher rate environment will lead depositors to be less willing to hold

non-interest-paying deposits.

1.5 Goodness of fit

The censored autoregressive model fits the data well, even far out of sample. A more

standard linear model, either estimated in levels or first differences, shows much greater

prediction error.

Table 2 shows the R2 and prediction error of the fitted model for savings deposit rates

as well as simple linear regressions of savings deposit rates on the fed funds rate in levels

and differences. In sample, the R2 of the censored autoregressive model is 0.997, making

its error variance 20× lower than the linear regression in levels.

To ensure that I am not overfitting, I test the out-of-sample prediction with a “leave-

one-out,” “leave-five-year-out,” and “leave-ten-year-out” approach. For each quarter, I split

the data into (a) an out-of-sample dataset of the following 1 quarter or 5 years of data and

(b) an in-sample dataset of the rest. I then fit the model on the in-sample set and calculate

the residuals for the last out-of-sample quarter.

The censored autoregressive model predictions hold up well even 5 years out of sample,

with a R2 > 0.98, and prediction error variance that is almost 4× lower than the linear

model in levels and 6× lower than the linear model in differences.9

9The linear model in first differences works well over 1 quarter because of the high autocorrelation of
the time series. But over the long term it fares poorly because it underestimates long term pass through
and predicts negative rates.
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(a) In sample

R2 MAPE (ppt)

Censored AR model 0.997 0.102
Linear model 0.932 0.512

(b) Five year out of sample

R2 MAPE (ppt)

Censored AR model 0.951 0.268
Censored AR model (beta != 1) 0.950 0.275
Linear model (levels) 0.852 0.486
Linear model (differences) 0.726 0.597

(c) Ten year out of sample

R2 MAPE (ppt)

Censored AR model 0.938 0.248
Censored AR model (beta != 1) 0.936 0.252
Linear model (levels) 0.807 0.430
Linear model (differences) 0.304 0.947

Table 2: In and out of sample goodness of fit statistics for linear models and
the censored autoregressive model from section 1.1. Panel (a) provides the simple
in-sample R2 and mean average percentage error (i.e. average of the absolute value of fitted
deposit rates minus observed deposit rates). Panel (b) provides results from a leave-one-
quarter-out analysis. Panel (c) provides results from a leave-five-year-out analysis, using
the residuals from the last quarter of the five-year out-of-sample period. Panel (d) provides
the same for 10 years. The first quarter of data is dropped from panel (b), the first 5 years
from panel (c), and the first 10 for panel (d)
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2 Deposit value & duration

Fixed spreads have very different implications for value and duration than the deposit

beta model. In this section I calculate the no-arbitrage value of deposit spreads modeled in

section 1 using derivative valuation tools and show that they can become highly sensitive

to the risk-free rate. The value of the bank declines at either very low or very high rates.

At low rates this effect hedges the interest-rate risk of bank assets. However the sensitivity

can become so large that it “over-hedges” and the duration of the whole bank becomes

negative.

2.1 Mechanism

When rates are very high, the value of deposit payments increases (and thus the value of

the bank declines) because the payments become large. On the other hand, when rates are

very low for a long time, the value can also increase because the value of future payments

becomes large.

A simple example can illustrate this effect. Suppose a bank has 1 dollar of deposits,

paid rate rd = rf − δ. The deposit is invested into an asset paying rf . Interest rates are

known with certainty and will remain at a level rf = ϵ < δ for the next T years, after

which, it will switch to its long term permanent value of rf = 5%.

Because ϵ < δ, the bank is not paying any interest before time T. So any increase in the

near-term risk-free rate ϵ just lowers the value of future deposit payments. Specifically, the

value of a unit of permanent deposits is:

PV (rd) =

(
1

1 + ϵ

)T

× 5%− δ

5%

Clearly this is a decreasing function of ϵ. And thus bank value is increasing in risk-free

rates.

On the other hand, the the value of the assets’ payment of the risk-free rate is always
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Figure 5: Illustrative example of bank value under changes in the risk free rate.
The left hand side shows the path of interest rates in the example described in the main
body text. The right hand side shows the value of the bank if δ = 2% and T = 10.

1. For example, applying the usual standard pricing formula in this case gives:

PV (rf ) =

(
1−

(
1

1 + ϵ

)T
)

× ϵ

ϵ
+

(
1

1 + ϵ

)T

× 5%

5%
= 1

So the value of the deposit spreads (and thus the bank) is 1− PV (rd) and is increasing in

the risk-free rate.

However, once near-term risk-free rate ϵ crosses above δ, the bank will start to pay

deposit interest out in the near term, and any further increase will lower the value of the

bank. So the value of the bank is “hump shaped” with respect to the risk-free rate with a

maximum at ϵ = δ. Figure 5 plots this relationship if δ = 2% and T = 10.

This hump shape does not depend on the particulars of the example — it applies for a

very general structure of the forward curve, when interest rates is unknown, and there are

a range of customers with different fixed spreads. It also applies to a level shift in both

the short and long term interest rate. In appendix B I state and prove a general statement

that low enough risk-free rates will always drive up the value of a permanent call option

on the risk-free rate.
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Figure 6: Rolling regression of changes in permanent cap prices on changes
in risk-free rates. The blue line shows the coefficient from a regression of 1 quarter of
daily changes in the price of a permanent 3% interest rate cap on daily changes in 10 year
treasury yields. The orange line shows the 10 year treasury yield.

As a simple test that this hump effect is relevant empirically, we can check the quoted

prices of caps from Bloomberg. Caps are quoted up to 30 years, so I create a simple

“model-free” estimate of the value of a permanent cap, by taking the quoted price for a

cap from 25–30 years at a 2% strike and assuming the forward price of the cap remains

constant after 25 years.

Figure 6 shows a daily rolling regression of changes in the price of the permanent cap

on changes in the 10 year treasury yield. As predicted, when interest rates are at their

lowest, as in 2021, a decline in rates is associated with a decline in the call option value.

And when rates are higher, an increase in rates is associated with a rise in the call option

value.

2.2 Valuation methodology

Model

To calculate the value and duration of deposits, I need to calculate the value of a call

options on the interest rates with a lag. I can estimate the price of a simple call option

directly from quoted interest rate derivatives, but I will need to use an interest rate model
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to estimate the effects of changes in the risk free rate (i.e. the duration).

Valuation also requires a few assumption about discount rates and growth rates. I follow

DeMarzo et al. (2024) and value the deposits as a static quantity discounted at the risk-free

rate. This is equivalent to assuming the growth rate and discount banks are equal. The

aggregate book equity of banks has grown at a 7% average rate since 1987, which is within

the range of typical equity risk premium assumptions. The constant growth assumption

is a reasonable approximation because deposit interest rates are simply far more variable

than balances and account for the vast majority of changes in cash flows. Deposit interest

rates plus a fixed growth rate account for 98% of the time series variance in the level of

demand deposit cash flows since 1987.10

The financial industry has a set of common and well understood tools to measure the

value and duration of interest rate derivatives. I use a Brace, Gątarek, and Musiela (1997)

model, also known as the “LIBOR market model,” one of the most popular interest rate

derivative pricing models used in banks and investment firms (Brigo and Mercurio, 2007).

The advantage of this model is that it allows me to:

1. Measure the effects of arbitrary shocks to the yield curve

2. Exactly match quoted prices of interest rate caps from 1 to 30 years at a particular

strike

3. Guarantee forward rates remain positive, or above some small negative number

I add two standard extensions to the model to better match quoted option prices: a

“constant elasticity of variance” (CEV) and a shift of 1%.

In this model, each quarterly forward rate from 3 months to 30 years has a separate but

correlated source of risk dBT
t . Under the time T forward measure, the price of the forward

10R2 from a regression of log dollar deposit interest expense on log deposit interest expense rate and
year is 0.98.
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expiring at time T follows the process:

dF T
t =

(
F T
t + 1%

)η
σTdB

T
t

The parameters of this model are:

• σT : volatility of the 3 month forward rate expiring at time T.

• 1%: A shift parameter to allow for small negative interest rates

• η: the CEV parameter and governs how the instantaneous volatility of forward relates

to their level. If η = 1, the model is lognormal, if η = 1 it is normal and if η = 0.5 it

is a square root process. This parameter is important to calculating the duration of

the option — the lower the value of η, the less the value of a call option will increase

when rates rise.

• The correlation matrix of the brownian motions for the different forward rates

Under any other measure, no arbitrage restrictions give a drift term to each forward rate

that depends on their correlation. Collectively the forward rates can vary independently,

but exhibit mean reversion. More details on the functioning of the Brace et al. (1997)

model can be found in fixed income derivative textbooks or MFE teaching material, for

example Brigo and Mercurio (2007) or Lesniewski (2019).

The value of call options (i.e. caplets) can be calculated in closed form. If η = 1, they

would follow the Black Scholes formula. With η ∈ (0, 1) they follow a slightly different

expression involving the χ2 distribution that can be found in standard textbooks. Valuing

the delay effect of deposit rates (i.e. γ from section 1) requires a Monte Carlo simulation

of interest rates.

Yield curve and cap price data is only available out to 30 years. I therefore assume the

forward rates and forward prices of call options are constant after 30 years.11

11A short-lived dislocation in bond markets at the end of 2008 means that the estimated 30 year forward
rate from Gürkaynak et al. (2007) at the end of 2008 is just 0.6%. This leads to very large estimates for
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Calibration

The forward rates in each period are taken from the Gürkaynak et al. (2007) yield curve

data. The correlation matrix of interest rate shocks is also calculated from the same data.

I choose the values of σ in each period that best prices 1–30 year interest rate caps

with strikes from 1% to 3%, since this resembles the structure of the fixed spread value.

Interest rate cap data is taken from the Bloomberg “Volatility Cube” and based on broker

quotations.

Finally the CEV parameter η is calibrated from a regression of daily squared changes

in forward rates on the level of forward rates. Taking the log of the squared forward rate

process gives us:

log
((

∆F T
t

)2) ≈ η × log
((

F T
t + 1%

)2)
+ log

(
σ2
T∆t

)
η can therefore be recovered from a regression of the log of daily changes in forward rates

on the shifted log level. The calibrated value is 0.35, implying the process is somewhere

between a normal and square root processs.

The model matches the market prices of call options whose payoffs very closely resemble

deposit rates. So while it is not a perfect description of reality, I am only asking it to

describe prices well locally around a specific set of quoted strikes and instruments.

Value calculations performed for interest rates far away from observed market rates, as

in the illustrations in figure 2 and 7, depend more on the accuracy of the model far away

from quoted derivatives. They should be treated as conceptual illustrations rather than

actual predictions of behavior under very large rate shocks.
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Figure 7: Demand deposit value at different interest rates. This figure plots what
the estimated value of the deposit franchise would be after level-shifting the yield curve
up and down, starting from 2019 Q4 values. The x-axis shows the 10 year spot rate after
the level shift, and the y-axis shows the valuation as a share of book equity. The blue area
shows the value of interest-paying demand deposits if the pass-through delay parameter
(γ) were 0. The orange area shows the extra value from the pass-through delay. The green
area shows the value of non-interest paying deposits.
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2.3 Value and duration

Figure 7 shows how the value of deposits changes when the interest rate level is shifted up

or down. To construct this figure I start with the banking system at year end 2019, shift

the entire yield curve up or down, and recalculate the value of deposits. The x-axis denotes

the 10-year spot rate after shifting the curve. The true 10 year spot rate was 1.6%.

The blue area shows the value of interest-paying demand deposits from the “pure call

option” — i.e. the value if the pass-through delay parameter γ were 0. The orange area

shows the value of the pass-through delay. The green shows the value of non-interest-paying

transaction deposits. These have a franchise value equal to their book value because they

never pay interest.

Four observations arise from the chart. The first is that the value of deposit spreads is

large. We should expect any swings in its valuation to have large effects on bank wealth.

On average 2002-2023, the value of deposit spreads is is 1.8× book equity. This is consistent

with the average value calculated by DeMarzo et al. (2024).12

Second, most of the value comes from the interest rate cap. The delay is relatively

unimportant. To a first approximation, the value of demand deposits is given by the value

of a permanent call option.

Third, the values show the same hump shape described described in section 2.1. Value

is maximized around rf = 2% and declines at high or low rates. So the bank’s risk and

hedging incentives flip signs depending on the level of rates.

Fourth, the hump shape is much steeper on the low side. So the bank should be more

concerned about interest rates in a very low rate environment as in 2021 than a very high

one as in the 1990s. Although the specifics of the slope will depend on the full yield curve

and the shape of th eshock being considered.

perpetuity values that likely do not reflect true discount rates. I therefore exclude this single quarter from
the duration charts in the rest of this section.

12DeMarzo et al. (2024) calculate value before tax is 25% of tangible assets. Adjusting for a leverage
ratio of 10× and a tax rate of 25% gives deposit value of 1.9× book equity.
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This pattern helps explain a common sentiment in the industry and markets that low

very low risk-free rates were bad for banks. For example, a typical equity analyst report

from early 2022 lists “rates normalization” as a “reason for hope” for bank stocks, and

sets price targets for on that basis (Morgan Stanley & Oliver Wyman, 2022). Similarly,

DeMarzo et al. (2024) document that bank risk disclosures generally reported that they

stood to benefit from interest rate increases during the low rate period.

3 Predicting the effects of monetary policy

Central banks need to be able to understand and predict how monetary policy will affect

bank wealth and stock prices, both to monitor systemic financial stability, and to predict

monetary policy transmission to credit provision (i.e. the bank balance sheet channel of

monetary policy, as in Bernanke and Gertler, 1995; Jimenéz, Ongena, Peydró, and Saurina,

2012).

Fortunately, the effects of monetary policy shocks are measurable in retrospect because

we know exactly when some of them occur. I follow the high frequency identification

literature (e.g. Nakamura and Steinsson, 2018; Gürkaynak et al., 2022) and treat 30 minute

changes in interest rates around Federal Open Market Committee (FOMC) announcements

as exogenous monetary shocks. We can then identify the effect on the value of publicly

listed banks by simply regressing stock returns on these shocks. Public banks account

for approximately 80% of bank assets, so this gives us a reasonable picture of the overall

market.

I therefore start this section by constructing a measure of the expected effect of a

“typical” monetary policy shock on total bank wealth. To do so, I calculate the duration of

assets and other income sources of banks and add this to my measure of deposit duration.

I then show that this measure predicts the observed effects of monetary policy with the

right scale and a high degree of statistical significance. In contrast, existing bank interest

rate risk measures all fail to even predict returns with the correct sign. This prediction
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exercise validates that my measure of deposit value and interest rate risk is accurate.

This exercise also resolves the puzzle from Haddad and Sraer (2020): why does the

duration of maturity and statutory assets not predict how market value of banks responds

to interest rate changes? The answer, at least for recent years, is that the variation in

deposit franchise duration measured in these paper overwhelms the asset effects measured

by Haddad and Sraer (2020).

3.1 Constructing a measure

A typical monetary shock

To predict the effect of a monetary shock on bank value I first need to know how they

change the yield curve. It is not exactly right to measure the effects of level changes to

the yield curve as in section 2, since monetary shocks are typically larger at the short end

than the long of the curve (Jarocinski, 2024).

As a measure of “typical” monetary shock, I use using the first principal component of

shocks to 4 different yields, accounting for 70% of variance. More specifically, I use the

fed funds futures rate and 5, 10, and 30 year treasury futures, 2002Q3–2023Q2. Principal

components of the fed funds forward and 5, and 10 year are often used to summarize

and categorize monetary shocks (e.g. Swanson, 2021; Jarocinski, 2024). I add the 30 year

rate as well because long term yields are particularly important for bank and deposit

valuation. Shock data is taken from Gürkaynak et al. (2022) up to 2019 and Jarocinski

(2024) thereafter. I scale the principal component such that the effect on the 2 year treasury

rate is 1.13

The deposit valuation described in section 2 allows me to calculate the effect of arbitrary

shocks to the yield curve. Since the high frequency data only identifies shocks to a few

points on the curve, I need to fit some function to connect these points and fill-in the rest

13The long term shocks to interest rates will be some combination of quantitative easing and forward
guidance and information effects. I do not try to separate these because my interest rate risk measures are
based on no arbitrage prices, and work equally well for risk-premium-driven shifts and expectation shifts.

23



Figure 8: 1st principal component of rate shocks, and fitted shock to forward
rates. The blue line plots the first principal component of high frequency shocks to the
fed funds futures rate and the 5, 10, and 30 year treasury futures rate. The orange line
plots the fitted shock to the spot curve and the green plots the fitted shock to the forward
curve.

of the rate-shocks. I fit a a Nelson-Siegel function that exactly matches the shape of the

principal component.

Figure 8 shows the first principal component of observed shocks, and the fitted yield

curve shocks. The shock is scaled to have size 1 at 5 years and follows the Nelson-Siegel

function:

fwdt = β0 + β1e
−t/λ + β2 (t/λ) e

−t/λ

I use daily bank stock returns to measure the effect of these returns on banks. Returns

data is taken from CRSP and linked to call report data using the RSSD ID to permco

linking file provided by the New York Fed. I use daily changes in bank stock prices instead

of returns from the 30 minute announcement window. This adds noise but should not

introduce any endogeneity problems and has the benefit of allowing for banks that might
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not have high liquidity during 30 minute windows.

Total bank duration

A full picture of the effects of monetary policy on bank wealth requires us to calculate the

contribution of assets, and all other sources of bank income and costs.

I calculate the duration of the assets on the balance sheet using data on maturities and

interest income from the Call Reports. I use standard bond pricing formulas to calculate the

value and duration of non-mortgage loans and securities and use mortgage-backed security

(MBS) index pricing data for mortgage loans and securities. Appendix D describes the

methodology and results. In total, asset duration rises from roughly 1 year in 2002 to 2

years in 2023. Since banks are leveraged roughly 10× on average, this adds 10-20 years to

bank duration.

The duration of non-asset, non-deposit cash flows is more challenging to estimate. These

include costs, fees, profitability of new loans, any future governmental transfers or levies,

etc. In my base case I assume that all of these sum to a perpetuity in expectation. I

narrow my focus to publicly listed banks (representing roughly 80% of bank assets) and

calculate the perpetuity size that delivers the market capitalization of the bank. The per-

petuity duration is then my estimate of duration for the non-asset, non-deposit value. This

approach of choosing a constant long-term cash flow to match equity prices is analogous

to the approach used in the equity implied duration literature, specifically Dechow, Sloan,

and Soliman (2004) and Weber (2018).

The estimated perpetuity value is around 0.2% of assets pre-crisis and around −0.8% of

assets post-crisis. The net impact is that estimated bank duration is lower post-crisis. This

is reasonable, because the drop in market prices of banks after the financial crisis must

translate to higher discount rates or low cash flow expectations, either of which lowers

duration.

My estimation is relatively robust to the choice of assumption on non-asset non-deposit
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duration. DeMarzo et al. (2024) instead use historical regressions to estimate that the long

term value of lending spreads minus costs is around 0 for the average bank. As a robustness

test, figure 15 in appendix F calculates the measure of monetary policy sensitivity with

this 0 assumption instead. The results are broadly similar — the choice of assumption will

shifts duration up or down, but not change the overall pattern. A full description of the

methodology and its results are in section E.

For the regression analysis, I use estimated sensitivities using the last complete quarter

of balance sheet data before the date of the FOMC announcement (e.g. I use March data

and duration estimates for an announcement in April). Cash flow sensitivity parameters are

estimated for each bank using the whole time series of data, as described in section 1. This

is meant to capture the best possible estimate of deposit sensitivity — investors may have

information on deposit interest rate sensitivity available to them through annual reports,

analyst calls, and customer surveys that is richer than the simple time series employed in

this analysis. As a robustness test in appendix H I recalculate the aggregate regressions

using expanding window estimates that do not use any future data.

3.2 The duration time series

Figure 3 plots the resulting estimate of the effect of monetary shocks on deposit value and

on total bank value. As in the stylized example from section 2.1, the exposure of the bank

to a rate rise is positive when rates are low and a small negative when rates are high. The

overall bank duration time series resembles the deposits-only time series, but scaled up

somewhat due to the effect of the non-asset non-deposit income perpetuity assumption.

The peak values are large relative to the value of banks — in 2020 they imply that a

single percentage point drop in interest rates would lead to up to a 75 ppt drop in the

market-to-book of banks. As a comparison point, the drop in bank market to book during

the Covid pandemic was just 60 ppt from Q4 2019 to Q1 2020. The interest rate hedging

incentives of banks therefore change dramatically over time.

The swings in duration are also macroeconomically large in dollar terms. At peak, in

26



Figure 9: Aggregate duration of deposits and of the total bank, scaled by market
cap, 2002 Q3 – 2023 Q2. The blue line plots the estimated derivative of deposit value
with respect to a monetary shock, divided by market cap (i.e negative duration) of all
publicly listed US banks. The orange line plots the the total duration including assets ans
non-asset non-deposit income.
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2020 the aggregate value of banks increased approximately $14 BN per basis point rise in

rates. By the 2023, that number dropped down to $1.3 BN. For comparison, the dollar

duration per basis point of all Fed holdings as of 2023 is only roughly $4.5 BN14. So in a

few years the swing in in public bank interest rate sensitivity added more than twice as

much duration to the public balance sheet all aggregate QE had removed.

This variation in bank interest rate risk is substantially larger than any other important

sources of time-variation in duration identified in the finance literature. Mortgage-backed-

securities prepayment risk and insurance company convexity and duration mismatch are

two key factors often credited for driving investor interest rate exposure and long term

yeilds (e.g. Hanson, 2014; Carboni and Ellison, 2022; Domanski, Shin, and Sushko, 2017).

In appendix G I show that swings in bank duration are larger and more persistent than

either of these sources, with variation around 10× higher.

3.3 High frequency regression

Aggregate results

Figure 3 compares the effect of interest rate shocks, measured using a rolling regression of

20 announcements (2.5 years), to my measure of bank interest rate risk. There is a clear

and consistent relationship between my measure and the effects of shocks outside of the

financial crisis period. This result is not just a peculiarity of the announcement days. In

appendix H, I repeat this plot using all days and show it follows the same pattern.

To confirm and test this relationship, table 3 shows a time series regression of banking

sector returns on the interaction of measured interest rate risk with rate shocks. If the

duration measure is accurate, then the coefficient on the interaction term should be near

one and highly significant.

The results are highly significant, all with p values under .01. They are also of the

correct scale, with coefficients of almost exactly 1. Of course it might be possible to

14Wan and Becker (2024) estimates fed holdings as $5.5 TN in 10-year Treasury equivalents. I assume
10-year Treasuries have a duration of 8 for this simple calculation
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Full Sample Fin. Cris. excluded
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Rate sens. × rate shock 1.274** 1.082** 0.442** 1.169*** 1.194*** 0.607***
(0.416) (0.330) (0.152) (0.313) (0.350) (0.163)

Rate shock -7.417 -9.214+ 2.934 -4.650+ -6.172* 2.404
(7.432) (5.239) (2.375) (2.377) (2.771) (2.077)

Rate sensitivity 0.003 0.005 -0.002 0.005 0.004 -0.001
(0.008) (0.007) (0.006) (0.007) (0.007) (0.006)

∆IG spread 23.603*** 12.062*** 11.783 10.133
(4.849) (2.533) (16.912) (9.300)

∆HY spread -10.219* -2.889 -3.348 -2.383
(5.148) (1.869) (3.786) (1.738)

Market return 1.527*** 1.249***
(0.144) (0.117)

Intercept 0.179 0.013 -0.132 0.103 0.095 -0.057
(0.178) (0.202) (0.081) (0.128) (0.126) (0.071)

Num.Obs. 168 168 168 152 152 152
R2 0.062 0.197 0.839 0.104 0.117 0.735

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table 3: Aggregate measured duration predicts bank stock price response to
interest rate shocks. This table shows results from regressions of banking sector returns
on FOMC announcement days on monetary shocks to long term interest rates, Q3 2002 –
Q2 2023. “Rate sensitivity” is the measured interest rate exposure of the aggregate banking
system, described in section E. “Rate Shock” is the change in the 10 year treasury yield in
the 1-hour window around FOMC announcements from Gürkaynak et al. (2022). “∆ IG
spread & HY spread” denote controls for daily changes in the ICE BofA option adjusted
investment grade or high yield credit spread index. “Market return” is a control for the
CRSP total market daily return. All columns exclude duration calculated using Q4 2008
and columns 4–6 exclude H2 2007 – H1 2009. All standard errors are Newey West with 3
lags.
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arrive at similar interest rate risk predictions by some other means (e.g. high fixed costs

or discount rates), but this at least serves as some validation that the deposit valuation

calculations from sections 1 and 2 are not unreasonable.

Effects are generally more robust when the financial crisis and its immediate after-

math are excluded (columns 4-6). Bank stocks were highly volatile during this period and

investors were likely to be parsing federal reserve announcements for information about

the nature of bank assistance programs, adding noise and possibly endogeneity into the

relationship.

The effects are also quantitatively important for explaining the overall variation in the

value of banks. Excluding the financial crisis, the duration and the 1 hour interest rate

shock explains a full 10% of the variance in daily bank returns (see R2 in column 4). This

is not just because interest rate shocks are large on FOMC days — a simple regression of

all daily stock returns on daily rate changes × duration also shows a similar R2.

One potential concern could be that monetary shocks impact bank value through credit

spreads and loan default expectations rather than interest rates. I control for this channel

by adding daily changes in high yield and investment grade credit spreads (the ICE BofA

option adjusted spread index) into the regression as controls in columns 2 and 5, with little

effect.

I also control for market returns in columns 3 and 6 to demonstrate that the observed

patterns reflect bank-specific effects rather than solely general market movements. Other

stocks of course have interest rate risk as well, so the coefficient after controlling for market

returns should be interpreted with caution — it no longer represents a pure bank interest

rate risk measure.

Bank-level results

Table 4 shows the results of a regression of individual bank returns on interest rate shocks

interacted with measured bank duration. The coefficient on the interaction term is again
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highly significant, although with a coefficient closer to 0.5 than 1 (columns 1 and 4).

To show that the effects are not purely driven by the time-series, i.e. that cross-sectional

differences in measured interest rate risk predict cross-sectional differences in share price

response, columns 2 and 5 include time fixed effects. After excluding the volatile financial

crisis period, the cross-sectional results are borderline significant, although substantially

less than 1, perhaps due to measurement error.

Just as for the time series results, the results are not driven by credit spreads or whole

market returns. Columns 3 and 6 show the results including bank-specific controls for

credit spreads and market returns (i.e. interactions of bank dummies × spread changes or

returns), which remain significant when excluding the financial crisis period.

To avoid the results being skewed by small banks with low daily liquidity and non-

standard business models, the regressions in table 4 is weighted by each bank’s share of

total sector market capitalization. I have also excluded a few banks with non-commercial-

banking business models (e.g. investment banks, custodians).

Comparison with other duration measures

Other measures of bank duration in the finance literature tend to move in the opposite

direction from this paper’s results because they do not include the large, concave deposit

value. They do not match the high frequency shock data — in fact most tend to predict

bank stock price reactions in the wrong direction.

I consider three alternative bank interest rate risk measures that I can reproduce or

extract from other papers: the measures calculated in DeMarzo et al. (2024) and Begenau,

Piazzesi, and Schneider (2015), and the “income gap” used, for example in Haddad and

Sraer (2020). Figure 10 plots these measures together — it is clear that they reach their

minima as this paper’s measure reaches its maxima.

These measures move in the opposite direction from mine because they are focused on

the bank’s assets rather than its franchise. DeMarzo et al. (2024) estimate that for the
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Full Sample Fin. Cris. excluded
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Rate sens. × rate shock 0.523** 0.071+ 0.067+ 0.684** 0.125+ 0.119*
(0.180) (0.038) (0.035) (0.207) (0.068) (0.059)

Rate shock -5.271 -3.837
(6.645) (2.873)

Rate sensitivity 0.003 0.003 0.004 0.005 0.003 0.005
(0.009) (0.003) (0.003) (0.010) (0.003) (0.004)

Intercept 0.302+ 0.117
(0.174) (0.134)

Num.Obs. 55230 55230 55230 49698 49698 49698
R2 0.027 0.768 0.804 0.047 0.736 0.765
R2 Within 0.002 0.003 0.003 0.004
FE: Date X X X X
FE: Bank X X
Bank × spread & market X X

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table 4: Value-weighted duration of all public banks predicts stock price re-
sponse to interest rate shocks. This table shows results from regressions of the returns
of 15 large commercial banks on FOMC announcement days on monetary shocks to long
term interest rates, Q3 2002 – Q2 2023, weighted by share of total market cap. Banks
with non-commercial business models are excluded as described in section 3.3 and the rate
sensitivity measure is winsorized at 1%. “Rate sensitivity” is the measured interest rate ex-
posure of the aggregate banking system, described in section E. “Rate Shock” is the change
in the 10 year treasury yield in the 1-hour window around FOMC announcements from
Gürkaynak et al. (2022). Date fixed effects are included in models 2, 3, 5, and 6. “Bank
× spread & market” denotes that controls have been added for bank id interacted with
daily changes in IG and HY credit spreads (using the ICE BofA index) and CRSP total
market returns. All columns exclude duration data calculated using Q4 2008 and columns
4–6 exclude H2 2007 – H1 2009. All standard errors are clustered by date.
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Figure 10: Different bank interest rate risk measures. This chart shows calculated
interest rate sensitivity (i.e. negative duration) estimated from this paper (see section E),
DeMarzo et al. (2024), Begenau et al. (2015), and Haddad and Sraer (2020). The income
gap measure is rescaled to match the mean and variance of this paper’s measure.
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average bank in 2021, the interest-rate-sensitive portion of bank franchise value amounts

to a very small perpetuity, of just 0.07%. So most of the interest rate exposure comes from

the asset book. Begenau et al. (2015) focus on the assets and statutory liabilities, treating

savings deposits as zero-duration. And the income gap used in Haddad and Sraer (2020)

is similarly only a measure of the interest rate exposure of assets and statutory liabilities.

The time series of bank duration (and thus these other measures) is negatively correlated

with asset duration because banks have accumulated more long-maturity assets over the

years as interest rates declined.

I calculate the DeMarzo et al. (2024) measure by using my estimate of security duration

and their estimate of the franchise perpetuity. For the Begenau et al. (2015) metric, I collect

aggregate interest rate factor exposures up to 2014 from their paper (figure 8) and divide

by aggregate bank market capitalisation.15 And I calculate income gap using the standard

definition applied to the aggregate bank balance sheet. The figures may not exactly match

the respective authors calculations but they should at least be highly correlated.

In table 11, I repeat the time series duration regression from table 3 for each of the

alternative duration measures shown in section 11. All measures have the wrong sign —

more positive measured interest rate exposure is associated with more negative response

of stock prices to positive interest rate shocks.

The coefficient on the DeMarzo et al. (2024) and Begenau et al. (2015) measures are

significant when excluding the financial crisis. Both measure the duration of assets. The

fact that they have a negative, significant sign suggests that banks tend to allow their asset

duration to move in the opposite direction from their franchise duration, consistent with

their time-varying hedging motive.

15Interest rate factor exposures are calculated in units of exposure to the 5 year interest rate swap. To
convert to a duration measure I multiply by 5 as a rough estimate of interest rate swap duration.
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Panel a: Full sample

DKN measure DKN (eq wtd) BPS measure Income gap

Rate sens. × rate shock 0.330 0.098 0.443 -3.826
(0.456) (0.158) (0.311) (3.670)

Rate shock -1.117 -1.402 -2.347 119.057
(9.615) (3.700) (6.992) (117.178)

Rate sensitivity -0.184 -0.065 -0.146* 0.029
(0.115) (0.041) (0.060) (0.096)

Intercept -1.009 -0.260 -1.495+ -0.609
(0.821) (0.291) (0.763) (3.060)

Num.Obs. 170 152 96 170
R2 0.107 0.055 0.128 0.032

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Panel b: Financial crisis period excluded

DKN measure DKN (eq wtd) BPS measure Income gap

Rate sens. × rate shock -3.260** -1.705* -2.654*** -0.368
(1.031) (0.786) (0.579) (1.876)

Rate shock -18.066*** -9.917* -35.775*** 13.368
(4.964) (4.014) (5.917) (60.853)

Rate sensitivity 0.000 -0.021 -0.044 -0.045
(0.044) (0.043) (0.030) (0.082)

Intercept 0.165 -0.076 -0.186 1.637
(0.281) (0.283) (0.358) (2.678)

Num.Obs. 152 137 78 152
R2 0.059 0.031 0.156 0.005

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table 5: Alternative interest rate risk measures do not predict bank stock price
reaction to interest rate shocks with the right sign. This table repeats the regres-
sions in table 3 using different alternative bank interest rate risk measures described in
section 3.3. Columns 1, 3, and 4 use value-weighted bank stock returns as the dependent
variable, while column 2 uses equal-weighted returns. “Rate sensitivity” is the measured
interest rate exposure, based either on DeMarzo et al. (2024), Begenau et al. (2015), or
Haddad and Sraer (2020). “Rate Shock” is the change in the 10 year treasury yield in
the 1-hour window around FOMC announcements from Gürkaynak et al. (2022). Panel b
exclude H2 2007 – H1 2009. All standard errors are heteroskedasticity–robust.
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4 Duration and long-maturity asset holdings

At very low interest rates, bank duration becomes negative, as shown in section 3. The

sensitivity of short-term deposit interest expense to income also drops. Depositors who

already paid 0 will see no decrease in rates if rates decline further, so the larger the share

of unpaid depositors, the lower the interest rate sensitivity.16

So if banks are risk averse with respect to their stock price (as in Haddad and Sraer,

2020), or their interest income (as in Drechsler et al., 2021), they have reason to buy

longer maturity assets when rates are low. If they are hedging their equity value, then

long-term assets will appreciate in value when their deposit franchise value drops. If they

are hedging their short term cash flows, then long-term assets will match the insensitivity

of their deposit interest income. These motives will be particularly strong for banks with

large savings deposit quantities, and large fixed spreads (δ).

This time variation in hedging motives helps explain why banks bought large quantities

of long-term securities during the zero rate period, and particularly when long rates were

at their lowest in 2020-2021. Figure 11 shows the time series of the share of bank balance

sheet that is invested in securities with maturities over 15 years, the longest maturity

bucket available in the call reports data. When rates were low, these assets (primarily

MBS) constituted under 7% of balance sheet. They rose up to 9% at the end of 2019

and then shot up to over 11% at the end of 2021. Drechsler, Savov, Schnabl, and Supera

(2024) document that bank MBS constituted an increasing share of the total economy-wide

mortgage holdings during this period.

This increase does not seem to be explained by credit demand, since it was driven

by securities rather than lending. Nor does not seem to be consistent with the simplest

versions of the “reach for yield” story (Hanson and Stein, 2015). The yield curve became

flatter over this period, so their was less and less yield to reach for. From 2010 to 2020 the

16Differentiating the deposit interest rate function from section 1.1 tells us deposit interest sensitivity
is exactly proportional to the share of depositors paid 0: ∂rdt

∂rft
= β(1− γ)Φ( r̃t−δ

s )
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Figure 11: Total securities with > 15y maturities as a share of all bank assets,
1997-2023. All commercial banks from the FFIEC call reports.

difference in yield between a 10 year and 3 month treasury bond steadily decreased 3.8%

to −0.2%.17

But the data is consistent with the interest-rate-risk driven story. The banks with

the most demand deposits and with the largest fixed spreads, whose spreads were most

squeezed against 0 were precisely those that bought the most long term securities. In figure

12 panel (a) I show the coefficients from quarterly regressions of the share of assets held in

> 15y maturities on the estimated savings deposit fixed spreads for each bank (i.e. the δ

from section 1.3). Panel (b) does the same exercise but using demand deposits as a share

of income as the regressor.

When rates were higher, there was little relationship. But as banks accumulate their

long-term securities, a relationship appears, with the highest-δ and highest deposit share

banks holding the most long term securities. At peak, in Q2 2022, the R2 from this

single-regressor is 11%. To ensure that the data is not driven by small with little effect on

aggregate securities holdings, I weight the regression by the bank’s share of total banking

system assets.

Drechsler et al. (2024) argue that banks’ increase in MBS holdings 2019-2021 was driven

by the large increase in savings and transaction deposits over the same period. Banks

17Data series T10Y3M from the Federal Reserve Bank of St Louis, FRED
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simply matched their new low-interest-rate-sensitivity deposit funding with low-interest-

rate-sensitivity MBS.

This explanation is not inconsistent with this paper — if banks are hedging their interest

rate risk, then they should care about both the changes in deposit quantity deposit interest-

rate-risk characteristics.

This dual explanation seems to fit with the available evidence. The increase in the

holdings of the longest-maturity securities was even larger than the growth in savings and

transaction accounts. From 2015 Q4 to 2021 Q2 the ratio of > 15y maturity securities to

savings and transaction deposits rose from 12.5% to 16.5%

Additionally, the relationship between savings deposit quantities and long-term security

holdings strengthened as rates fell. This change is easily explained if the interest-rate

sensitivity of those deposits changed, as described in this paper — i.e. the hedging motive

per dollar of deposits strengthened. Figure 12 panel (b) plots the coefficient from quarterly

regressions of > 15y maturity security holdings on savings and transaction deposits. Before

2010 there is a weak and usually not-significant relationship. After 2010, the relation

becomes stronger, peaking in 2021.

5 Conclusion

The past few decades have seen a great deal of uncertainty about bank interest rate risk.

The correlation of bank returns with interest rate changes has gone from negative to positive

and back again. And academics and regulators have variously argued that it should be

positive, negative, or near 0.

The challenge of determining the risk lies in the deposits, where statutory maturity

differs from behavioral. A low “deposit beta” is supposed to lower the sensitivity of interest

expenses to the risk-free rate and thus allow banks to hold longer term assets without

taking interest rate risk (Drechsler et al., 2021). But from a valuation point of view, the

value of a fixed beta to interest rates is constant and shows no interest rate risk, so how
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Panel (a): Coefficient on estimated savings deposit δ

Panel (b): Coefficient on savings & transaction deposits/ assets

Figure 12: Coefficients from quarterly regressions of > 15y maturity securities
as a share of assets on explanatory variables, all banks 1997-2023. Regressions
are weighted by share of total assets, and standard errors are heteroskedasticity-consistent.
Estimated δ is winsorized at the 1% level.
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can it hedge long term loans (DeMarzo et al., 2024)?

By breaking the assumption of a fixed deposit beta and using slightly more sophisticated

asset pricing tools to value deposits, I show that the deposit spreads themselves can deliver

positive interest rate exposure even before considering fixed costs. Furthermore when long-

term rates become very low, they will dramatically “over-hedge” and the bank gains a large

positive exposure to interest rates.

To check that the importance of this dynamic, I conduct a realistic, quarterly quantifi-

cation of the value and interest rate sensitivity of banks using my model of deposit interest.

The result matches high-frequency response to monetary shocks well. The fixed spreads

explain why investors seem to have “changed their minds” on bank interest rate exposure

This time variation in interest rate risk presents a potentially powerful motive for banks

to change their holdings in a low rate environment. Low long-term rates should mean more

savings deposits are put into long term assets. This is consistent with the time series and

cross-sectional dynamics observed in the data.

40



References

Begenau, Juliane, Monika Piazzesi, and Martin Schneider, 2015, Banks’ risk exposures,

NBER Working Paper 21334.

Begenau, Juliane, and Erik Stafford, 2018, Do banks have an edge?, Harvard Business

School Working Paper 18.

Bernanke, Ben S., and Mark Gertler, 1995, Inside the black box: The credit channel of

monetary policy transmission, Journal of Economic Perspectives 9, 27â48.

Brace, Alan, Dariusz Gątarek, and Marek Musiela, 1997, The market model of interest

rate dynamics, Mathematical Finance 7, 127–155.

Brigo, Damiano, and Fabio Mercurio, 2007, Interest Rate Models - Theory and Practice

(Springer Finance).

Carboni, Giacomo, and Martin Ellison, 2022, Preferred habitat and monetary policy

through the looking-glass, ECB Working Paper 2022.

Dechow, Patricia M., Richard G. Sloan, and Mark T. Soliman, 2004, Implied equity dura-

tion: A new measure of equity risk, Review of Accounting Studies 9, 197–228.

DeMarzo, Peter, Arvind Krishnamurthy, and Stefan Nagel, 2024, Interest rate risk in

banking, Working paper .

Dick, Astrid A., 2008, Demand estimation and consumer welfare in the banking industry,

Journal of Banking Finance 32, 1661–1676.

Domanski, Dietrich, Hyun Song Shin, and Vladyslav Sushko, 2017, The hunt for duration:

Not waving but drowning?, IMF Economic Review 65, 113–153.

Drechsler, Itamar, Alexi Savov, and Philipp Schnabl, 2017, The Deposits Channel of Mon-

etary Policy*, The Quarterly Journal of Economics 132, 1819–1876.

41



Drechsler, Itamar, Alexi Savov, and Philipp Schnabl, 2021, Banking on deposits: Maturity

transformation without interest rate risk, The Journal of Finance 76, 1091–1143.

Drechsler, Itamar, Alexi Savov, Philipp Schnabl, and Dominik Supera, 2024, Monetary

policy and the mortgage market, working paper .

Drechsler, Itamar, Alexi Savov, Philipp Schnabl, and Olivier Wang, 2023, Banking on

uninsured deposits, Working Paper 31138, National Bureau of Economic Research.

Greenwald, Emily, Sam Schulhofer-Wohl, and Joshua Younger, 2023, Deposit convexity,

monetary policy, and financial stability, Federal Reserve Bank of Dallas Working Paper

2315.

Gürkaynak, Refet, HatiÌce Gökçe Karasoy-can, and Sang Seok Lee, 2022, Stock market’s

assessment of monetary policy transmission: The cash flow effect, The Journal of Finance

77, 2375–2421.

Gürkaynak, Refet S., Brian Sack, and Jonathan H. Wright, 2007, The u.s. treasury yield

curve: 1961 to the present, Journal of Monetary Economics 54, 2291–2304.

Haddad, Valentin, and David Sraer, 2020, The banking view of bond risk premia, The

Journal of Finance 75, 2465–2502.

Hannan, Timothy H, and Allen N Berger, 1991, The Rigidity of Prices: Evidence from the

Banking Industry, American Economic Review 81, 938–945.

Hanson, Samuel G., 2014, Mortgage convexity, Journal of Financial Economics 113, 270–

299.

Hanson, Samuel G., and Jeremy C. Stein, 2015, Monetary policy and long-term real rates,

Journal of Financial Economics 115, 429–448.

Huber, Max, 2022, Regulation-induced interest rate risk exposure, Working Paper .

42



Jarocinski, Marek, 2024, Estimating the fedâs unconventional policy shocks, Journal of

Monetary Economics 144, 103548.

Jiang, Erica Xuewei, Gregor Matvos, Tomasz Piskorski, and Amit Seru, 2023, Monetary

tightening and u.s. bank fragility in 2023: Mark-to-market losses and uninsured depositor

runs?, Working Paper 31048, National Bureau of Economic Research.

Jimenéz, Gabriel, Steven Ongena, José-Luis Peydró, and Jesús Saurina, 2012, Credit supply

and monetary policy: Identifying the bank balance-sheet channel with loan applications,

American Economic Review 102, 2301â26.

Kang-Landsberg, Alena, Stephan Luck, and Matthew Plosser, 2023, Deposit betas: Up,

up, and away?, Liberty Street Economics, Federal Reserve Bank of New York .

Lesniewski, Andrew, 2019, Interest rate and credit models.

McFadden, Daniel, 1973, Conditional logit analysis of qualitative choice behavior, Frontiers

of Econometrics 105–142.

Moench, Emanuel, James Vickery, and Diego Aragon, 2010, Why is the market share of

adjustable-rate mortgages so low?, Federal Reserve Bank of New York: Current Issues

in Economics and Financ 16.

Morgan Stanley & Oliver Wyman, 2022, Climate, crypto, and competing in this cycle,

Corporate & Investment Banking Blue Paper .

Nakamura, Emi, and Jon Steinsson, 2018, High-Frequency Identification of Monetary Non-

Neutrality: The Information Effect*, The Quarterly Journal of Economics 133, 1283–

1330.

Swanson, Eric T., 2021, Measuring the effects of federal reserve forward guidance and asset

purchases on financial markets, Journal of Monetary Economics 118, 32–53.

Wan, Simon, and Tom Becker, 2024, Qt-lite: Quantitative tightening’s limited impact,

Blackrock Insights .

43



Wang, Olivier, 2020, Banks, low interest rates, and monetary policy transmission, Working

Paper Series 2492, European Central Bank.

Wang, Yifei, Toni M. Whited, Yufeng Wu, and Kairong Xiao, 2022, Bank market power

and monetary policy transmission: Evidence from a structural estimation, The Journal

of Finance 77, 2093–2141.

Weber, Michael, 2018, Cash flow duration and the term structure of equity returns, Journal

of Financial Economics 128, 486–503.

Xu, Deheng, 2024, Interest Rates, Banksâ Market Power, and Their Asset Maturity, Work-

ing Paper .

44



Appendices

A A model of discrete depositor choice

The motivation for this model is primarily practical and empirical, but it can also be

microfounded with a simple model of consumer choice. In this section, I derive the model

from setup where depositors a discrete choice among banks with different quality levels.

The only departure from a standard “logit” model as in McFadden (1973) that is needed

to match the empirical model from section 1.1 is that consumers pay more attention to

prices when rates are falling than rising.

I focus in this model on depositors optimization over which bank to choose, rather than

depositors choice of deposit quantity. This focus is justified if depositors choice of banks is

much more elastic to individual bank deposit rates than depositors choice of overall savings

quantities. Or in plainer English, I assume that when banks set their deposit rates they

are primarily worried about customers moving to a different bank, not customers saving

less in total.

Suppose there are N depositors indexed by j and M banks indexed by i, where N and

M are both large. Each depositor chooses a single bank. The depositor’s utility from each

bank depends on the deposit pricing (rdit), but also on the quality of the services provided by

that particular bank (ξit) and some random error-term for that bank–customer combination

(εjit) that follows an extreme value distribution. If the bank pays less than 0 interest, the

depositor will choose to hold cash instead of deposits, but still retain the benefit of the

bank relationship.

The depositor therefore chooses bank i to solve:

max
i

Ujt = max{rdit − rft , 0}+mt (ξit + εjit)

The variance of the quality and error terms are scaled by a potentially time-varying
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weight mt, which can be interpreted as how much attention the depositor pays to price or

how hard she searches.

Following standard results, the share of deposits demanded from bank i is a logit function

of prices:

Dit =
exp

((
rdit
)
/mt + ξit

)∑M
k=1 exp

((
rdkt
)
/mt + ξkt

)
Each bank therefore chooses deposit rates to maximize its total profit vs funding at the

risk-free rate:

max
rdit

Dit

(
rft − rdit

)
The bank’s first order condition, after some rearranging, is:

rdit − rft =
−mt

1−Dit

Since M is large, each bank’s share of deposits (Dit) is small, so the equilibrium deposit

rate is approximately:

rdit ≈ rft −mt

If mt is constant, banks will have fixed deposit spreads. In reality, as documented in

section 1.1, we tend to observe wider spreads when rates have recently risen. This effect

suggests that bank market power, and thus mt, is greater when banks rates have recently

risen.

I therefore assume depositors have some lagging perception of the true level of risk-free

rate, gleaned from social networks, news, etc, given by:

r̂t = γr̂t−1 + (1− γ) βrft + εt

When the true risk-free rate is below the perceived rate (i.e. mt is low), the depositor

thinks she is getting a bad deal and so searches harder and puts more emphasis on price.
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Hence the bank market power mt is given by:

mt = δ + rft − r̂t

This effect could also be seen as a reduced form for a more complicated model with

search costs and frictions where customers are more likely to look into switching banks

when they are notified of a rate cut on their account.

It may seem counterintuitive to suggest depositors focus more on price when rates have

fallen, since most of us have been more likely to check our bank rates in the past 2 years

when rates have increased. But this is a function of 1) the 0 floor on deposit rates which

pinned spreads near 0 in an exogenous fashion when rates were low, and 2) the equilibrium

pricing behaviors of banks. Banks respond to the lower price-attentiveness of customers in

rising rate periods by increasing spreads until depositor choices remain the same.

With this form for mt, the equilibrium bank deposit rate becomes:

max{rdit, 0}

Where

rdit ≈ γrdit−1 + β (1− γ)
(
rft − δ

)
Which is the same as equationa 1 and 2 for an individual depositor.

The parameters (γ, δ) here are characteristics of the depositors not the bank, and thus

all banks charge the same rate in this model. To think about different banks with different

parameters, as I estimate in section 1.1, we should consider multiple product and regional

markets with different customer parameters. Each bank has a different exposure to different

markets, so faces different parameters. Different product markets also delivers a range of

δ values within a bank, which allows for the “phased in” truncation from equation 2.

47



B Proof of negative deposit duration at low rates

Denote the value of a continuous call option at from time 0 to T given a path of instanta-

neous forward rates {ft}∞0 as :

VC

(
0, T, {ft}T0

)
=

∫ T

0

P (0, t)C(t, ft)dt

Proposition ??:

Let the path of forward rates {ft}∞0 be such that:

• Forward rates are held below some value η > 0 from time 0 to some time T:

∀t ∈ [0, T ] : 0 < ft < η

• After T, rates are high enough that the perpetuity rate is at least r and the value of

the permanent call before discounting is at least V :∫ ∞

T

P (T, s) ≤ 1

r

V (T,∞, {ft}∞T ) =

∫ ∞

T

P (T, s)C(s, ft) ≥ V

And let the C follow a few simple conditions appropriate for a call price:

• C(t, ft) ≥ 0 and ∂C
∂ft

(t, ft) ∈ [0, 1] for all t ∈ [0,∞) and ft ∈ (0,∞)

• As f → 0, either the call option price is bounded below or it smoothly approaches 0:

∀f > 0, t > 1 : C(t, f) > C0 > 0
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or

∀t > 0 : lim
f→0

C(t, f) = 0; lim
f→0

∂C

∂ft
(t, f) = 0

Then there exists a value of η low enough and T large enough that a positive level shock

to forwards rates will have an arbitrarily negative effect on the value of the permanent call

— i.e. duration is arbitrarily positive:

∀D < 0, ∃η, T s.t.
∂

∂ε

∣∣∣
ε=0

VC (0,∞, {ft + ε}∞0 ) < D

Where:

VC (0,∞, {ft + ε}∞0 ) =

∫ ∞

0

P (0, t)C(t, ft)dt

Proof:

Separate the value of the call by time into three portions, splitting at time 1 and T:

VC (0,∞, {ft + ε}∞0 ) = v10 + vT1 + v∞T

Where

vBA = P (0, A)VC

(
0, 1, {ft + ε}BA

)
And note that the derivative of each w.r.t. the rate shock (i.e. the negative duration)

is given by:

∂

∂ε

∣∣∣
ε=0

V B
A = P (0, A)

(∫ B

A

P (A, t)

(
∂C

∂ft
(t, ft)− tC(t, ft)

)
dt− AVC

(
A,B, {ft}BA

))

I will show the duration of each of the three parts is either bounded or goes to infinity

as η → 0 and T → ∞. Thus the total duration goes to infinity.

v10: The portion from 0 to 1 must have a derivative ≤ 1 because the ∂C
∂ft

is bounded
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above at 1 and C is bounded below at 0:

∂

∂ε

∣∣∣
ε=0

v10 ≤
∫ 1

0

P (0, t)1dt ≤ 1

v∞T : As η → 0, the portion after T has a duration that becomes arbitrarily large as T

increases, because the value is bounded below at V :

lim
η→0

∂

∂ε

∣∣∣
ε=0

v∞T =

∫ ∞

T

P (T, t)

(
∂C

∂ft
(t, ft)− tC(t, ft)

)
dt− TV (T,∞, {ft}∞T )

≤
∫ ∞

T

P (T, t)1dt− TV ≤ 1

r
− TV

vT1 : Depending on the behavior of the call function as f → 0, the duration of portion

between 1 and T will either approach 0, or have an arbitrarily large value as T gets large.

If the value is bounded below (as in the Vasicek model), then:

lim
η→0

∂

∂ε

∣∣∣
ε=0

vT1 =

∫ T

1

∂C

∂ft
(t, ft)− tC(t, ft)dt− V

(
1, T, {ft}T1

)
≤
∫ T

1

1− tC0dt ≤ T − 1− C0

2
(T − 1)2

Which is arbitrarily negative as T → ∞

If the value and derivative of the call option approach 0 as f → 0 (as in a model where

rates are lognormal, for example):

lim
η→0

∂

∂ε

∣∣∣
ε=0

vT1 =

∫ T

1

0dt− 0 = 0

Hence as η → 0 the derivative of the call option w.r.t. to rates becomes arbitrarily

negative as T increases.
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C Details of deposit model estimation

C.1 Data filters

For the bank-level analysis I conduct same the estimation separately for each bank. For

data quality purposes I drop from the individual analysis:

• Banks with less than 50 quarterly observations

• Micro-banks, defined as those with under $100 MM assets in Q1 2023, or the equivalent

percentile of total banking system assets for previous quarters

• Banks with deposits under 1/3 of assets

• Banks which ever report paying deposit rates > 3 ppt above the Fed Funds rate, or a

2 ppt jump in rates that reverses the next quarter

• Banks that report negative or exactly 0 rates (just 64 small banks)

• Banks-quarter observations that have a > 50 bp jump that reverses the next quarter

C.2 Likelihood function

To estimate the model, I numerically maximize the joint likelihood of the observed deposit

rates. The conditional log likelihood of deposit rates can be derived as:

L
(
rdt+1

∣∣∣rd,t, rft+1, γ̂, β̂, δ̂, σ̂, ŝ
)
= log

(
1

σ̂
ϕ

(
ε̂t+1

σ̂

))
− log

(
Φ

(
f−1

(
rdt+1

)
ŝ

))

Where

ε̂t+1 = f−1
(
rdt+1

)
− γ̂f−1

(
rdt
)
− (1− γ̂)

(
β̂rft+1 − δ̂

)
And f−1 is the inverse of the censoring function from equation 2.

The optimization can be sped up by noting that conditional on s, the maximum likeli-

hood solutions for (γ̂, β̂, δ̂, σ̂) are given by the OLS estimator for equation 1, plugging in
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f−1
(
rdt
)

for r̃t. Hence I can conduct a fast univariate optimization over ŝ, plugging in the

OLS solutions for the other parameters for each guess for ŝ.

C.3 Bank-level results

Summary statistics for the coefficients estimated from the bank-level analysis for all de-

mand deposits are shown in table 6. The cross-sectional means are similar to the aggregate

estimates, with relatively high δs and βs near one. Fixed spreads (δ) are generally sub-

stantial and statistically significant.

The association of δ with bank characteristics, also shown in figure 6, is mostly consistent

with market-power and cost-to-serve interpretations of the fixed spreads. High spreads are

correlated with the bank cost base (e.g. from branch costs) and amount of small depositors,

measured as share of deposits under the FDIC insurance thresholds. Surprisingly, high local

market concentration is actually correlated with a low delta.
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Summary stats Regression coefficients
Mean Stdev PctSignificant Log assets Cost/ assets Insured share Cty HHI

δ 0.028 0.017 0.738 -0.179 0.067 0.053 -0.112
γ 0.859 0.080 0.963 -0.835 -0.040 2.243 0.607
s 0.030 0.019 0.789 0.143 0.111 0.299 -0.061
σ 0.003 0.001 0.922 -0.013 0.005 -0.023 -0.002

Table 6: Summary statistics for bank–level estimates of deposit parameters. 3,374 banks are included
in the savings deposit results and 912 in the transaction deposits. “Share signif” shows the percent that pass a t-
test at a 95% confidence level. Parameters and bank characteristics are winsorized at the 1% level. Columns labeled
“regression coefficients” show the results of a regression of bank-level average characteristics on the estimated bank-level
coefficients. “Insured share” is the share of deposits consisting of balances under the FDIC insurance thresholds ($100
K before 2009 and $250 K after). Characteristics labeled “Cty” are branch-weighted averages of county characteristics.
“HHI” is a measure of local market concentration, specifically the Herfindahl-Hirschman index of bank branches. “Age”
and “income” are the average age and income of counties from census data
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D Asset duration

A full picture of the interest rate risk of the bank requires us to also calculate asset duration.

I do so using call report data on maturities and interest income and applying standard

bond pricing formulas and mortgage-backed security (MBS) index pricing data. Asset

varies between 1 and 2 and does not change enough to counteract the swings in deposit

duration described in section 2

D.1 Methodology & assumptions

Unlike for instant-access deposits, I focus on valuing the stock of existing assets rather than

the permanent flow of loans. I treat time deposits the same way. I use a different approach

for two reasons. First, unlike for instant access deposits, there is rich information available

about the maturity of loans and time deposits. There is no need to try to estimate interest

rate exposure from the time series of interest income when we can measure it directly from

maturity.

Second, interest rates on assets are above the risk-free rate, not below it. So assets

will not show the same spread compression dynamics that are described in section 1 when

interest rates approach 0. Estimation of the duration of expected spreads on new loans is

therefore performed in a simple fashion in section E.

The call reports provide maturity data on three types of assets: non-mortgage loans

(constituting 43% of assets 2002-2023), mortgage loans (11%), mortgage backed securities

(11%) and treasuries (9%). A further 25% of assets has not maturity data, and largely

consists of cash and deposits. The average interest income rate is also provided for each of

these products.

I estimate the value and duration of non-mortgage loans, treasuries, and time deposits

by assuming they consist of a series of coupon bonds. The call reports provide data on

the book value of loans maturing in 6 different maturity buckets (e.g. < 3 months, 3m –

1 year, etc). I assume the balance in each bucket matures at the mid-point of the bucket.
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I use the average interest income of the product as the coupon rate. For non-mortgage

loans, I apply a credit spread equal to the ICE Bank of America high yield bond credit

spread index. Duration is generally close to the maturity for coupon bonds, and so is

relatively insensitive to coupons or spreads.

Estimating the value duration of mortgages and MBS is more complicated because of

the prepayment option embedded in the product. Fortunately, there are widely available

indices used to track the price and duration of mortgage backed securities (e.g. as used in

Hanson, 2014). I apply price and duration estimates from the Bloomberg Barclays MBS

indices to the bank mortgage holdings.

D.2 Results

The time series of estimated asset duration and the contribution of each type of product is

shown in figure 13. Unsurprisingly, asset duration is relatively stable over time and does

not flip signs like deposit spread duration does.

Average asset duration over the decade ending in 2023 was 2. This estimate is approxi-

mately half the size of the most recent and widely used estimates from Jiang et al. (2023).

The differences are explained in appendix [X] but come down to a misreading of how the

call report maturity data applies to amortising assets. My estimates are in line with the

average bank disclosures that securities duration is approximately 4 years18 and are roughly

in-line with the “conservative” set of estimates that Jiang et al. (2023) provide based on

actual MBS transactions.

Short term trends in duration (e.g. the large increase 2022-3) are driven by mortgage

convexity. When the interest rate moves down, borrowers tend to refinance their mortgages,

lowering the duration of existing mortgages.

There is also a long-term secular increase in asset duration post-crisis. This has two

18Jiang et al. (2023) also justify their estimates based on these figures, but appear to have misread the
bank disclosures. Banks provide estimates of security duration, not overall assets. Security duration is
about twice as high as overall asset duration by my estimates.
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Figure 13: Aggregate duration of bank assets 2002 Q3 – 2023 Q2. The total stacked
height shows the aggregate duration of all assets. Each color shows the contribution of a
specific product. Duration is defined as ∂V alue/∂r

V alue
. Details of the estimation methodology

are in section D.
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sources. First, banks increased their holdings of long-maturity assets, particularly around

2020. MBS and treasury holdings rose around 20% at the start of 2019 to 26% at the end

of 2021.

Second, the duration of mortgages and mortgage backed securities themselves increased

from an average of 2 in 2000-2010 to an average of 3.6 2013-2023, as adjustable rate

mortgages and shorter term fixed rates have been replaced by 30 year fixes. The Bloomberg

Barclays index of fixed rate maturities increased its average duration from 3 to 4 during this

period, and I estimate that the share of adjustable rate mortgages has fallen from 25% to

6%. These estimates are in line with the federal home finance agency monthly interest rate

survey shows ARM shares fluctuating between 20-30% pre-crisis and dropping to < 10%

post-crisis (Moench, Vickery, and Aragon, 2010).

E Total bank duration

The bank does have other expected cash flows besides the deposits and loans: costs, fees,

profitability of new loans, any future governmental transfers or levies, etc. A full account-

ing of bank interest rate risk requires some assumption on the duration of this residual

component. In my base case I assume that the residual costs constitute a perpetuity. My

estimation is relatively robust to this choice — the exact choice of assumption will tend to

shift duration up or down, but not change the overall pattern.

E.1 Methodology & assumptions

We can check the scale of the residual bank value by comparing my estimates of deposit

and asset value to the market value of public banks.

A regression of aggregate bank stock prices onto the measured asset and deposit values

in table 7 shows that these two measures alone explain just under half of the variation in

bank valuation over the past 20 years.19

19The regression in levels is only run post-crisis because of the large shift in the level of market-to-book
pre- and post-crisis
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=
Levels (post-crisis) Annual changes

(Liab value - book) / book equity 0.282*** 0.737***
(0.051) (0.212)

(Asset value - book) / book equity 0.465*** 0.590**
(0.090) (0.173)

Intercept 1.541*** -0.099+
(0.168) (0.051)

Num.Obs. 58 80
R2 0.495 0.365
Std.Errors Newey-West (L=4) Newey-West (L=4)

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table 7: Regression of aggregate bank market-to-book on estimated deviations
of asset and deposit value from book value, 2022Q3 - 2023 Q2. Regressors are
scaled by aggregate book equity. Estimation of of asset and deposit franchise value is
described in sections 2 and D. The regression in levels is performed on data from 2009 to
2023 Q2 because of the large level shift in market-to-book around the financial crisis (e.g.
on the full sample, a simple pre-post-crisis dummy alone has an R2 60%).

However, there is a large unexplained portion of bank value. For my main estimation

I simply assume that this residual value in each period is composed of a perpetuity ct,

discounted at the same 2% risk premium as the rest of the bank cashflows. The full detail

of this simple calculation as well as the calibrated values are shown in appendix F.

The resulting value of aggregate ct is 0–0.2% of assets pre-crisis and around −0.5%

post-crisis. The net impact is that estimated bank duration is lower post-crisis. This is

reasonable, because the drop in market prices must translate to higher discount rates or

low cash flow expectations, either of which lowers duration.

This approach of choosing a constant long-term cash flow to match equity prices is anal-

ogous to the approach used in the equity implied duration literature, specifically Dechow

et al. (2004) and Weber (2018). I leave ρ constant and vary ct for numerical simplicity and

consistency with the existing literature. If I varied ρ instead, the results would likely be

similar – higher market to book would imply higher duration in both cases.
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The assumption behind this approach is that the residual cash flows are not a function

of interest rates. For operational costs, this assumption is relatively uncontroversial, and

is also made for example in Drechsler et al. (2023); DeMarzo et al. (2024); Begenau and

Stafford (2018).

For spreads on new lending, the evidence points toward only very modest effects of the

interest rate level. A regression of the spread between new mortgage loans (accounting for

30% of aggregate lending) and MBS yields increase just 0.05 ppt for each 1 ppt increase

in the fed funds rate. These effects are small enough that they could be accounted for

by prepayment option effects or borrowers shifting to higher fee products. DeMarzo et al.

(2024) also find that loan spreads have a loading of just 0.05 on the interest rate.20.

Replacing some of the ct perpetuity with a floating-rate spread would just shift up or

down the duration, with little change in the overall pattern. In appendix F I include an

estimation of duration if we assume that the residual value comes entirely from floating

rates, and the value of ct is 0.21

What would change the overall pattern of duration would be a strong non-linear response

of loan spreads to interest rates — for example if loan spreads exactly cancel out the

compression of deposit spreads at low interest rates. However the recent path of net

interest margin suggests this is not the case: from Q1 to Q4 2022 as rates rose, the spread

between bank loan and deposit rates rates rose by over a full percentage point.22

I also show in appendix F that there is no correlation between changes in the ct estimates

and changes in interest rates. This suggests that I am not systematically over- or under-

estimated the residual duration.

20Wang (2020) shows that loans spreads increase as rates lower, but only for two relatively small loan
categories: ARMs and vehicle loans.

21This is similar to DeMarzo et al. (2024)’s estimation of a nearly 0 fixed franchise perpetuity for the
average bank

22The drop in interest rates in 2009 was not associated with a drop on net interest margin, most likely
due to large one-off increase in (a) credit spreads and (b) term premia after the financial crisis.
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F Details of residual value estimation and robustness

I define the future “remaining cashlows” Ct,T at time t of each bank such that:

Pt = VA,t + VDF,t − VL,t +

∫ ∞

t

e−(T−t)rt→TE∗
t (Ct,T )dT

Where Pt is the pre-tax market price of bank equity, VA is the value of assets, VDF the

value of the deposit franchise, VL the book value of liabilities, and rt→T the spot rate from

time t to T.

The pre-tax market price of bank equity is calculated as Pt =
MktCap

1−τ
, where MktCap

is the market capitalisation observed on CRSP and τ is the corporate tax rate, assumed

here to be 0.25.

I assume that at time t the expected future remaining cash flows are a constant share

ct of bank assets At, and are discounted at a constant rate ρ, net of asset growth:

E∗(Ct,T ) = e−(T−t)ρAtct

I find ct by matching the value of the observed market price of the bank in each period:

ct =
Pt − VA,t − VDF,t + VL,t

At

∫∞
t

e−(T−t)(rt→T+ρ)dT

I plug in a typical equity discount rate for ρ. As described in section 2 I use ρ = 2%,

based on an average bank stock excess return of 7% minus a 5% growth rate.

I test the approach by checking for correlation between changes in ct estimates and

changes in interest rates. If I systematically over-estimated duration, then I would find

that the value of the bank is higher than predicted after rates increase. This would mean

that there should be a correlation between changes in interest rates and changes in the

value of ct. Table 8 reports the coefficients from a regression of changes ct on changes in
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Table 8: Regression of annual changes in aggregate ct on annual changes in
interest rates, 2003 Q3 - 2023 Q2. ct is the estimated residual cash flow perpetuity
described in section E. Regressors are changes in the federal funds rate and the yield on 10
year treasury securities. ct and yields are both expressed in whole numbers, so a coefficient
of 0.01 implies a 1 ppt increase in rates is associated with a .01 ppt increase in ct.

Summary stats Summary stats Correlations Correlations

# obs 34604.00 Log assets 0.04
# banks 942.00 Cost/ assets 0.05
Avg obs per qtr 407.11 Maket-to-book 0.57
Mean ct (ppt) -4.07 (Liab value - book) / BE -0.09
Std of ct (ppt) 21.18 (Asset value - book)/ BE -0.05
Cross-sectional std ct 19.28

Table 9: Summary statistics for estimates of residual cash flow perpetuities ct
for public banks, 2002 Q3 - 2023 Q2. ct is the estimated residual cash flow perpetuity
described in section E. Parameters and bank characteristics are winsorized at the 1% level.
Columns labeled “Correlations” show the correlation of parameters with the average across
quarters of different bank characteristics.

short and long term interest rates. The point estimates are close to 0 and insignificant and

the 95% confidence intervals do not include any large effects.

The estimated values for aggregate rate of expected cash flows ct for all public banks

is shown in figure 14. The most striking feature of the time series is the drop in expected

remaining cash flows around the global financial crisis. Prior to 2007, ct remained in the

range of 0–0.2% of assets, whereas from 2010 onwards it was generally below −0.4%.

Summary statistics for the panel of ct estimates is shown in table 9. The cross-sectional

standard deviation is high, at 1.5 ppt on average 2003-2023. ct shows intuitive negative

correlations with assets and cost — i.e. smaller higher-cost banks have less residual cash

flow expectation. Unsurprisingly, since ct is constructed as the portion of market to book

not explained by liability and asset valuations, it also shows strong positive correlations

with market to book and negative correlations with deposit franchise value and asset value.

While ct plays an important role in determining average duration, its time series varia-
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Figure 14: Fitted values for the residual cash flow expectation perpetuity ct,
2002 Q3 – 20023 Q2. See section E for description of methodology.
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Figure 15: Aggregate (negative) duration of public banks using a a perpetuity
duration or 0 duration for remaining value, 2002 Q3 – 2023 Q2. This figure
recreates panel b from figure ??, but assuming the residual cash flow perpetuity ct is 0.

tion is relatively unimportant. As a robustness test, figure 15 plots the time series of bank

duration if we assume that ct is instead either (a) equal to it’s time series average(around

-0.3%) or (b) 0. The overall picture is similar, with peaks in interest rate sensitivity when

long rates are low and the floor is valuable.
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G Comparison to other sources of variation in aggregate

duration

Mortgage-backed-securities prepayment risk and insurance company convexity and dura-

tion mismatch are two key factors often credited for driving investor interest rate exposure

and long term yields (e.g. Hanson, 2014; Carboni and Ellison, 2022; Domanski et al., 2017).

Figure 16 plots the aggregate duration created by these two sources over the past 20 years

vs the bank duration described in this paper, and shows that swings in bank duration are

larger and more persistent. The standard deviation of total bank duration is approximately

3–4× higher than either MBS or insurer duration.

H Additional stock return validation tests

Figure 17 compares the measured banking sector duration from section E to the coefficients

from a simple rolling 1 quarter regression of daily bank stock returns on changes in the 10

year rate, with no high frequency identification.

The stock prices price behavior shows the same patterns and scale as this paper’s du-

ration measure. When yields were low and interest rate floors expense, the relationship

between yields and bank stock prices became positive.

In table 11, I repeat the time series duration regression from table 3 for each of the

alternative measures. All measures have the wrong sign — more positive measured interest

rate exposure is associated with more negative response of stock prices to positive interest

rate shocks. The coefficient on the DeMarzo et al. (2024) and Begenau et al. (2015)

measures are significant when excluding the financial crisis. Both measure the duration of

assets. The fact that they have a negative, significant sign suggests that banks tend to

allow their asset duration to move in the opposite direction from their franchise duration.

In section 4 I explore the hedging interpretation of this finding.
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Figure 16: Comparison of time-series of total dollar duration from the bank
mechanism described in this paper, insurers, and mortgage-backed securities,
2002-2023. The y axis shows the negative of dollar duration, scaled by GDP. Insurer
duration is taken from Huber (2022). MBS duration is provided by the Bloomberg Barclays
aggregate MBS index and matches the figures used in Hanson (2014). Bank dollar duration
is estimated on publicly listed banks and then scaled up to all bank using the ratio of all
bank assets to public bank assets.
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Rate sens. × rate shock 1.216** 1.089*** 0.429* 1.162*** 1.197*** 0.638***
(0.377) (0.282) (0.170) (0.330) (0.341) (0.185)

Rate shock -4.802 -7.155 3.759 -1.944 -3.674 3.601+
(6.851) (5.160) (2.466) (2.637) (2.957) (2.165)

Rate sensitivity 0.003 0.003 -0.001 0.005 0.004 0.000
(0.009) (0.008) (0.007) (0.008) (0.008) (0.007)

∆IG spread 23.747*** 12.283*** 10.975 10.683
(5.005) (2.582) (17.900) (9.222)

∆HY spread -10.340* -2.967 -3.615 -2.565
(5.084) (1.900) (3.814) (1.805)

Market return 1.524*** 1.246***
(0.146) (0.119)

Intercept 0.185 0.035 -0.147+ 0.120 0.115 -0.071
(0.168) (0.190) (0.078) (0.128) (0.127) (0.065)

Num.Obs. 168 168 168 152 152 152
R2 0.062 0.200 0.839 0.104 0.119 0.738

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table 10: Out of sample aggregate measured duration, calculated using expand-
ing windows predicts bank stock price response to interest rate shocks. This
table repeats the regressions in table 3 using bank duration measures calculated from ex-
panding window estimates of bank interest rate sensitivity that do not use any data from
after the date of the relevant interest rate shock. “Rate sensitivity” is the measured inter-
est rate exposure of the aggregate banking system, described in section E, and calculated
without any out of sample data. “Rate Shock” is the change in the 10 year treasury yield
in the 1-hour window around FOMC announcements from Gürkaynak et al. (2022). “∆ IG
spread & HY spread” denote controls for daily changes in the ICE BofA option adjusted
investment grade or high yield credit spread index. “Market return” is a control for the
CRSP total market daily return. Columns 4–6 exclude H2 2007 – H1 2009. All standard
errors are heteroskedasticity–robust.
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Panel a: Full sample

DKN measure DKN (eq wtd) BPS measure Income gap

Rate sens. × rate shock 0.330 0.098 0.443 -3.826
(0.456) (0.158) (0.311) (3.670)

Rate shock -1.117 -1.402 -2.347 119.057
(9.615) (3.700) (6.992) (117.178)

Rate sensitivity -0.184 -0.065 -0.146* 0.029
(0.115) (0.041) (0.060) (0.096)

Intercept -1.009 -0.260 -1.495+ -0.609
(0.821) (0.291) (0.763) (3.060)

Num.Obs. 170 152 96 170
R2 0.107 0.055 0.128 0.032

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Panel b: Financial crisis period excluded

DKN measure DKN (eq wtd) BPS measure Income gap

Rate sens. × rate shock -3.260** -1.705* -2.654*** -0.368
(1.031) (0.786) (0.579) (1.876)

Rate shock -18.066*** -9.917* -35.775*** 13.368
(4.964) (4.014) (5.917) (60.853)

Rate sensitivity 0.000 -0.021 -0.044 -0.045
(0.044) (0.043) (0.030) (0.082)

Intercept 0.165 -0.076 -0.186 1.637
(0.281) (0.283) (0.358) (2.678)

Num.Obs. 152 137 78 152
R2 0.059 0.031 0.156 0.005

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table 11: Alternative interest rate risk measures do not predict bank stock
price reaction to interest rate shocks with the right sign. This table repeats the
regressions in table 3 using different alternative bank interest rate risk measures described
in section 3.3. Columns 1, 3, and 4 use value-weighted bank stock returns as the dependent
variable, while column 2 uses equal-weighted returns. “Rate sensitivity” is the measured
interest rate exposure, based either on DeMarzo et al. (2024), Begenau et al. (2015), or
Haddad and Sraer (2020). “Rate Shock” is the change in the 10 year treasury yield in
the 1-hour window around FOMC announcements from Gürkaynak et al. (2022). Panel b
exclude H2 2007 – H1 2009. All standard errors are heteroskedasticity–robust.
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Figure 17: The bank interest rate risk measure closely tracks the relationship
of daily yield changes on daily bank returns. The orange line shows the aggregate
interest rate sensitivity of public banks. Sensitivity is calculated as the negative duration
of all bank equity (details in section E). The blue line shows the coefficient from a rolling
1-quarter regression of 1-day banking sector stock returns on 1 day changes in the 10 year
treasury yield. Data from the financial crisis (2007 H2 - 2009 H1) is shaded in grey.
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